
ingrid

Bryan Max Garcia

May 25, 2022

CONTENTS:

1 INGRID Introduction 3

2 Getting Started 5

3 Module Documentation 71

4 Indices and tables 107

Python Module Index 109

Index 111

i

ii

ingrid

INGRID (INteractive GRID) is a Python based tokamak edge plasma grid generator capable of automatic generation
of grids for magnetic-topologies with up to two x-points anywhere in the domain. The code can be operated in both a
GUI mode and within scripts.

This documentation will get a user up and running with operating INGRID in GUI mode. For operating INGRID via
scripts, API documentation has been generated (see Module Documentation).

The INGRID code is maintained by LLNL PLS-FESP. Issues with the code be brought to the attention of the current
maintainers Bryan Garcia (UCSC), Maxim Umansky (LLNL), and Jerome Guterl (GA).

CONTENTS: 1

ingrid

2 CONTENTS:

CHAPTER

ONE

INGRID INTRODUCTION

INGRID is an interactive grid generator for tokamak edge-plasma modeling capable of handling magnetic-
configurations with two x-points in the computational domain.

INGRID analyzes EFIT data in order to classify the magnetic-topology, and generate the appropriate gridue formatted
file for use in simulation code UEDGE.

Key features of INGRID include:

1. Support for single-null, unbalanced double-null, and snowflake (15, 45, 75, 105, 135, 165) configurations

2. Python based code with GUI and scripting usability

3. UEDGE friendly

4. Portable YAML parameter file driver

5. Modular design pattern for continued development efforts

INGRID was developed at LLNL PLS-FESP by Bryan Garcia (UCSC), Maxim Umansky (LLNL), and Jerome Guterl
(GA).

3

https://gafusion.github.io/OMFIT-source/modules/mod_EFIT.html
https://github.com/LLNL/UEDGE

ingrid

4 Chapter 1. INGRID Introduction

CHAPTER

TWO

GETTING STARTED

In this section, we will explain how to install INGRID and walk you through an example case that generates a grid for
a single-null configuration. Examples will be showcasing the GUI operation of INGRID.

2.1 Downloading and installing INGRID

2.1.1 Requirements

To run INGRID on your machine, anaconda3 and setuptools must be installed and up to date. anaconda3 installers
can be found here.

Tip: You can create a new conda environment with the command conda create --name myenv (replace myenv
with the environment name).

Once the Anaconda package manager is installed, setuptools can be added to the conda environment by running:

conda install -c anaconda setuptools

To update setuptools run:

pip install setuptools --upgrade

2.1.2 Obtaining the code

Clone the INGRID repo with the command:

git clone https://github.com/LLNL/INGRID.git

5

https://www.anaconda.com/products/individual

ingrid

2.1.3 Installing INGRID

Warning: Users not on MacOS Mojave may skip this warning. Read on otherwise. MacOS Mojave has issues
with certain backend libraries used in INGRID. These issues have been documented by Apple. As a workaround, a
specific Conda evironment has been created and must be installed by Mojave users. Navigate into the cloned repo
locate the file conda_env.yml. Create the mentioned Conda environment by running conda env create -f
conda_env.yml. Activate the new Conda environment by running conda activate ingrid. When active, the
terminal prompt should begin with (ingrid). The ingrid Conda environment must be active for the next section.

The user will install INGRID with the setup.py file provided in the cloned repo. Installation begins by running:

python setup.py install --user

2.1.4 Contents

Within the cloned repo are a variety of directories containing source-code, drivers, example/template files for control-
ling INGRID (will be discussed later), and data that the provided example-files/demos use.

We will be utilizing the directory example_files in our tutorials, and we encourage you to utilize the items in directory
template_files for your own INGRID usage.

2.2 Launching the INGRID GUI

Now that INGRID has been installed on the machine, you can now begin utilizing INGRID in both GUI mode and as
an importable module in Python. We will focus on using INGRID’s stand-alone GUI for now.

Warning: As a reminder, MacOS Mojave users must ensure the conda environment provided with the INGRID
code has been installed. The following information assumes the user has done so (see Downloading and installing
INGRID if unsure).

2.2.1 Launching from drivers

Although INGRID can be imported and launched from a Python session, we will first explain how to launch INGRID
from the cloned repo.

We recommend new users launch INGRID in this way since the example_files we will explore in the tutorials come
pre-set with relative paths to necessary data (eqdsk files, geometry files, etc. . .).

Note: Once the basic controls for setting paths to data withing the INGRID parameter file is understood, the user
should be able to utilize the provided example-files without starting from the drivers directory.

To launch via the driver script, navigate into the cloned repository that we used to install INGRID. From here, navigate
into the directory drivers and run the command:

python StartGUI.py

The INGRID GUI should now be visible, and ready for use.

6 Chapter 2. Getting Started

ingrid

2.2.2 Launching from a Python session

For users who know do not intend on using the YAML files within example_files, or those who understand how to
set paths within the INGRID parameter file, you can launch the INGRID GUI from a Python prompt as follows:

>>> from INGRID import ingrid
>>> ingrid.QuickStart()

After executing the above commands, the INGRID GUI should be visible and ready for use (seen below).

Note: Upon launching the INGRID GUI, the user will be prompted with a plenty of terminal output. This is nothing
to be alarmed of since this part the Ingrid class’ initialization. As we load parameter files and modify settings, we
should see appropriate changes reflected in the terminal output.

2.3 The INGRID parameter file

2.3.1 Background

INGRID has been designed to be controlled from a single configuration/parameter file when operating in GUI mode.
This specially formatted YAML file is similar to Fortran namelist files due to the key-value structure it contains.

Here is a snippet of what a YAML formatted file can look like.

Comments are supported and follow python convention!
YAML entries are a mapping of the form:
#
key: value
#
It follows that python interprets the YAML file as a dict

my_YAML_entry:
YAML file use spaces as indentation.
2 or 4 spaces (pick one and stick to it) indicate a nested item.
Here we use 4 spaces.
my_str_key: 'Hello, YAML!' # my_str_key = 'Hello, YAML!'
my_int_key: 32 # my_int_key = 32
some_float: 3.14159 # some_float = 3.14159
my_true_bool: true # bool case-insensitive
my_false_bool: 0 # '1' '0' bool values supported.

Empty lines within file are ok.

(continues on next page)

2.3. The INGRID parameter file 7

https://yaml.org/spec/1.2/spec.html#Introduction

ingrid

(continued from previous page)

Just remember it's the spaces that matter.

my_sub_dict: # Nested dicts are supported.
another_key: ending my example code-block here.
The above value entry will be interpreted as a string
(no quotations needed)

Although the INGRID parameter file contains many controls for a user, it does not stray from the patterns illustrated
above (no advanced YAML knowledge required).

Tip: While operating INGRID in GUI mode, keep your favorite text-editor handy with the parameter-file in use loaded.
You will be making frequent edits to this core parameter/configuration file.

Although not necessary for following tutorial, detailed documentation of the INGRID parameter-file can be found here.

2.3.2 A single-null example file

Users of INGRID have plenty of controls available for fine-tuning their final grid. This section explains how to navigate
some key controls within the INGRID parameter file.

We will be using the pre-populated INGRID parameter file DIIID_SNL.yml from the example_files directory in
the single-null walk-through. Open this file in your preferred text-editor. At the time of writing this documentation, the
parameter file DIIID_SNL.yml contains the following:

User data directories

dir_settings:
eqdsk: ../data/SNL/DIII-D/ # dir containing eqdsk
limiter: . # dir containing limiter
patch_data: ../data/SNL/DIII-D/ # dir containing patch data
target_plates: ../data/SNL/DIII-D/ # dir containing target plates

eqdsk file name

eqdsk: neqdsk

General grid settings

grid_settings:
--
Settings for grid generation (num cells, transforms, distortion_correction)
--
grid_generation:
distortion_correction:
all:
active: True # true, 1 also valid.
resolution: 1000
theta_max: 120.0

(continues on next page)

8 Chapter 2. Getting Started

ingrid

(continued from previous page)

theta_min: 80.0
np_default: 3
nr_default: 3
poloidal_f_default: x, x
radial_f_default: x, x

guard cell size

guard_cell_eps: 0.001

num levels in efit plot

nlevs: 30

num xpts

num_xpt: 1
patch_generation:
strike_pt_loc: target_plates # 'limiter' or 'target_plates'
rmagx_shift: 0.0
zmagx_shift: 0.0

Psi levels

psi_1: 1.066
psi_core: 0.95
psi_pf_1: 0.975

magx coordinates

rmagx: 1.75785604
zmagx: -0.0292478683

xpt coordinates

rxpt: 1.300094032687
zxpt: -1.133159375302

Filled contours vs contour lines

view_mode: filled

Saved patch settings

patch_data:
file: LSN_patches_1597099640.npy
preferences:
new_file: true
new_fname: LSN_patches_1597099640.npy

use_file: false

(continues on next page)

2.3. The INGRID parameter file 9

ingrid

(continued from previous page)

Integrator

integrator_settings:
dt: 0.01
eps: 5.0e-06
first_step: 5.0e-05
max_step: 0.064
step_ratio: 0.02
tol: 0.005

Limiter settings

limiter:
file: ''
use_efit_bounds: false

target plate settings

target_plates:
plate_E1:
file: d3d_otp.txt
zshift: -1.6
auto_order: True

plate_W1:
file: d3d_itp.txt
zshift: -1.6
auto_order: True

Let’s highlight some important entries that are often used when operating INGRID for single-null cases (basic usage).
Advanced tutorials will also be provided.

2.3.3 Setting data paths

A user can provide a string that indicates the path to certain data. This is used to tell INGRID where to look for EFIT
data, target plate coordinate, limiter coordinates, and patch-data (for reconstruction). We can set these paths by editing
the entry:

User data directories

dir_settings:
eqdsk: ../data/SNL/DIII-D/ # dir containing eqdsk
limiter: . # dir containing limiter
patch_data: ../data/SNL/DIII-D/ # dir containing patch data
target_plates: ../data/SNL/DIII-D/ # dir containing target plates

Note: INGRID supports both absolute paths and paths relative to where INGRID has been launched.

10 Chapter 2. Getting Started

ingrid

If dir_settings is missing any entries, INGRID will (internally) set the missing values to a default value of '.'
(current working directory). This holds even if dir_settings is omitted from the parameter file.

Note: dir_settings entries are the directory to look for data and NOT the file itself.

2.3.4 Providing an EQDSK file

The user provides the actual EQDSK file name separate from the dir_settings entry. We provide this at the global
YAML level under entry eqdsk. That is:

eqdsk file name

eqdsk: neqdsk

Note: In this example, INGRID searches for the file neqdsk within the directory ../data/SNL/DIII-D/ (relative
to the launch point) since dir_settings['eqdsk'] was set to ../data/SNL/DIII-D/ (see above).

2.3.5 Defining target plates

All target plate settings are under the global INGRID parameter file entry target_plates. We see this as:

target plate settings

target_plates:
plate_E1:
file: d3d_otp.txt
zshift: -1.6
auto_order: True

plate_W1:
file: d3d_itp.txt
zshift: -1.6
auto_order: True

INGRID adopts a N-S-E-W compass direction notation in order to help generalize and simplify grid generation. It is
important for a user to eventually learn these conventions. A detailed discussion of INGRID’s naming conventions can
be found here.

For now (in the case of a lower single-null configuration), note that entries plate_E1 and plate_W1 correspond to the
outer and inner target plates, respectively. Each plate entry recognizes sub-entries such as file (file name to load),
zshift (z-translation), rshift (r-translation, not utilized and internal to INGRID defaults to 0.0), and auto_order
(INGRID geometry pre-processor).

2.3. The INGRID parameter file 11

ingrid

2.3.6 An especially important note on target plate geometries

In order to automate and simplify much of the grid generation process, INGRID needs to perform format checks and
pre-processing of user inputs.

In general, a user provided geometry file (target plate or limiter) can be a text file with (r, z) coordinates on each
line, or a numpy file representing a saved numpy array of shape (N, 2).

Provided a geometry file, INGRID performs a crucial pre-processing step that attempts to order the provided coordi-
nates clock-wise around the magnetic-axis. This operation is performed automatically by default, and must be done for
visualization and Patch Map generation purposes. The clock-wise convention and Patch Map generation is dicussed in
the documented example pages.

Note: The ordering operation performed automatically can be turned off by setting the auto_order flag to False
within a specific target_plate entry.

Warning: Although disabling auto_order can be useful for dealing with tricky geometries in which INGRID’s
ordering algorithm fails, the user MUST ensure the clock-wise orientation of the provided geometry file themselves.

2.3.7 Defining x-points, magnetic-axis, and psi-levels

Settings for x-point coordinates, magnetic-axis coordinates, and psi-levels are found under the global INGRID param-
eter file entry grid_settings.

General grid settings

grid_settings:
...
...
Other items currently not of interest...
...
...

num xpts

num_xpt: 1

Psi levels

psi_1: 1.066 # SOL
psi_core: 0.95 # CORE
psi_pf_1: 0.975 # PRIVATE-FLUX

magx coordinates

rmagx: 1.75785604

(continues on next page)

12 Chapter 2. Getting Started

ingrid

(continued from previous page)

zmagx: -0.0292478683

primary xpt coordinates

rxpt: 1.300094032687
zxpt: -1.133159375302

Warning: The entry num_xpt is one of the most important entries in the INGRID parameter file since it determines
INGRID’s method of analysis. Dealing with more than one x-point requires a more in-depth understanding of the
parameter file, so ensure this is set to the correct number of x-points.

2.4 Example: single-null configuration (introduction)

Warning: This tutorial assumes INGRID has been launched from the provided GUI driver. See page Launching
the INGRID GUI for explaination.

Here we will demonstrate how to generate a grid for a lower single-null (SNL) configuration. This tutorial aims to:

• Explain the GUI capabilities

• Illustrate the INGRID workflow (data analysis → patch-generation → grid-generation → exporting gridue)

• Expose the user to key parameter-file controls (see parameter-file documentation for further details)

Note: Although we are creating a lower single-null grid here, INGRID internally treats both lower and upper single-
null configurations as SNL class instances. This means there is no difference in user operation for generating a grid for
either LSN or USN configurations.

2.4.1 Loading our first example

After getting the INGRID GUI up and running, click the GUI button labeled “Select Parameter File” shown below
boxed in red.

From here, your machine’s native file navigator should be on the screen. Navigate into the directory example_files
the cloned repository to find a collection of example-cases we used for showcasing INGRID’s capabilities (as well as
for testing the product).

2.4. Example: single-null configuration (introduction) 13

ingrid

Now navigate into directory SNL and select the file DIIID_SNL.yml. The GUI should now be updated with the loaded
path to the example-file we selected as seen below boxed in red.

INGRID has now processed the selected parameter-file. Some (of many) actions executed automatically by INGRID
include:

• Processing of paths to data (EFIT, geometry, patch-data, etc.)

• Loading of EFIT data

• Loading of strike-geometry (target plates and/or limiter)

• Refining of x-point coordinates

• Refining of magnetic-axis coordinates

• Initialization of visualization settings

With the data loaded, we can now proceed.

2.4.2 Viewing loaded data

To view the EFIT data, loaded strike-geometry, and psi-levels that will dictate our final grid, simply select “View
Loaded File” shown below boxed in red.

Once clicked, we are greeted with a new plot window showing the DIII-D data we have loaded.

14 Chapter 2. Getting Started

ingrid

Here are some key items that INGRID has plotted (as seen in the legend):

• Refined primary x-point coordinate as an orange ‘+’ marker (xpt1)

• Refined magnetic-axis coordinate as a yellow ‘+’ marker (magx)

• Normalized eqdsk data as black and white filled contours (psi-value of 0 at magx and psi-value of 1 at xpt1)

• plate_W1 data as a dark blue line (LSN inner target plate)

• plate_E1 data as an orange line (LSN outer target plate)

• The primary separatrix (red contour line)

• SOL boundary (lime contour line)

• CORE boundary (cyan contour line)

• PRIVATE-FLUX boundary (white contour line)

Note: The user provides the approximate primary x-point coordinates (rxpt1, zxpt1), and magnetic axis coordinates
(rmagx, zmagx) in the INGRID parameter file. INGRID takes these as an initial guess to provide to a root-finder in order
to refine the user-provided coordinates to high-accuracy. These values are used internally throughout the user-session.

2.4. Example: single-null configuration (introduction) 15

ingrid

This stage is where the user will interact the most with the INGRID parameter file (tweaking psi-values, target-plate
locations, limiter data, etc). Said settings will be used to generate the patch map we will see in the next section. Since
these have already been provided for you, let us proceed to creating patches.

2.4.3 Creating patches

INGRID interally uses a geometry object hierarchy (Point ∈ Line ∈ Patch ∈ TopologyUtils) to generate the final
gridue file. We will now create a collection of Patch objects. These Patch objects are quadrilaterals that form a
partition of the region we are interested in generating a grid for. Before elaborating further, let us now create said
collection of patches (referred to as a Patch map) by clicking the GUI button labeled “Create Patches” shown below
boxed in red.

Once clicked, INGRID begins line-tracing in order to generate the Patch map seen below.

16 Chapter 2. Getting Started

ingrid

The collection of Patch objects are pictured in the Patch map. These Patch objects will generate their own subgrid
that will be stitched together to form the exported global grid.

2.4.4 Saving Patch data

INGRID provides the user the capability of saving Patch data into a specially formatted NumPy npy files for later
reconstruction. We control this feature within the parameter file by modifying the entries under patch_data (seen
below):

Saved patch settings

patch_data:
file: LSN_patches_1597099640.npy
preferences:
new_file: true
new_fname: LSN_patches_1597099640.npy

use_file: false

2.4. Example: single-null configuration (introduction) 17

ingrid

Here we have:

• file - the name of the file to use for Patch reconstruction

• preferences - settings for configuring final Patch data file

– new_file - create a new Patch data file

– new_fname - name of new Patch data file

• use_file - use the provided file for Patch reconstruction

Note: Remember to set the directory to search for a Patch data file by modifying patch_data under entry
dir_settings

Because the parameter file is populated with the above settings, we see that after creation of a Patch map the terminal
prompts the user with a message stating:

Saved patch data for file LSN_patches_1597099640.npy

The user is encouraged to try this feature out. To do so, first change the use_file entry within patch_data to a value
of True and save the file. Now, close the Patch map window, and click Create Patches again. The Patch map
should now be restored back to the state it was at.

Tip: Patch data files expedite the grid generation process by bypassing all line-tracing. This feature is also useful for
trading cases with other INGRID users

2.4.5 The Patch map

In the above plot we can see the “Patch map”. Each Patch is been assigned it’s own color, as well as a Patch label/tag
consisting of a two-character string of the form “<alpha_char><numeric_char>””. This coding directly represents the
index space of the final grid with:

• The alpha-char (“A”, “B”, . . . , “F” here) representing a poloidal “column” in the index space.

• The numeric-char (“1” and “2” here) representing a radial “row” in the index space.

Below is diagram illustrating said notation.

18 Chapter 2. Getting Started

ingrid

This notation proves to be robust since it holds for not only SNL topologies (both LSN and USN), but also all topologies
such as UDN and the family SF*.

For the SNL family of configurations, the collection of Patch objects with numeric_char == “2” (”A2” - “F2”) represent
the SOL, Patch objects “A1” and “F1” represent the PF region, and Patch objects “B1”, “C1”, “D1”, and “E1”
represent the CORE.

Note: We will use this notation extensively for fine-tuning the final grid

Tip: Patch objects are ordered alphabetically clock-wise around the magnetic-axis and enumerated in direction of
increasing psi

Now that we have partitioned the EFIT domain into the region we wish to model, let us now generate a grid.

2.4.6 Creating a grid

Before generating a grid, let’s take a look at some grid controls in the INGRID parameter file.

Below are some entries we will be modifying.

General grid settings

grid_settings:
--
Settings for grid generation (num cells, transforms, distortion_correction)
--
grid_generation:
distortion_correction:
all:
active: True # true, 1 also valid.

(continues on next page)

2.4. Example: single-null configuration (introduction) 19

ingrid

(continued from previous page)

resolution: 1000
theta_max: 120.0
theta_min: 80.0

np_default: 3
nr_default: 3
Other grid settings

Within the entry grid_settings, we have:

• grid_generation - settings for controlling resultant grid

– distortion_correction - settings for controlling shearing in grid

– np_default - default number of poloidal cells per Patch

– nr_default - default number of radial cells per Patch

Note: We will work with entry distortion_correction at a later time (next section). For now, set the entry value
to False so that we can see it’s effects later

To execute refinement of the Patch map into a grid, we click the GUI button Create Grid.

The terminal will prompt the user with the progress of Patch refinement by providing a short summary of the subgrid
being generated within each Patch. When Patch refinement has finalized, we are greeted with a new window showing
the resultant grid.

20 Chapter 2. Getting Started

ingrid

Although this grid can be immediately exported, there are still actions we can take to improve our grid naively generated
with only np_default and nr_default.

2.4.7 Fine-tuning the grid

Generating grids with global values np_default and nr_default is not enough in many cases. INGRID allows users
to specify the number of poloidal and radial cells for particular regions of the Patch map. This allows for refining the
grid near regions of interest while maintaining global/default grid values per Patch.

To utilize this feature, we will fall back on the Patch naming convention explained in section The Patch map. The figure
below shows a collection of keyword entries (np_A, np_B, . . . np_F, nr_1, nr_2) that can be added to the INGRID
parameter file to control the number cells in a grid.

2.4. Example: single-null configuration (introduction) 21

ingrid

Note how modifying np_A would affect both “A2” and “A1” since they are poloidally dependent in index-space. Sim-
ilarly, we see how modifying np_1 would affect “A1” - “F1” since they are radially dependent in index-space.

Let’s illustrate this idea by increasing the number of poloidal cells near both target plates. We see by inspecting the
Patch map that target plates border patches “A*” and “F*”. This says we must add entries np_A and np_F to the
INGRID parameter file. That is:

General grid settings

grid_settings:
--
Settings for grid generation (num cells, transforms, distortion_correction)
--
grid_generation:
distortion_correction:
all:
active: false # true, 1 also valid.
resolution: 1000
theta_max: 120.0
theta_min: 80.0

np_A: 9 # Create 9 poloidal cells in patches A1 and A2
np_F: 9 # Create 9 poloidal cells in patches F1 and F2

np_default: 3
nr_default: 3
Other grid settings

In addition to refining poloidally, let’s increase the radial resolution near the target plates. In this case “A2” and “A1”
are not dependent on each other (as seen in figure above). On the other hand, since the SOL consists of all patches with
numeric-tag “2”, modifying “A2” in radial cells will modify all other patches in the SOL radially to keep the index-map
consisitent. We will choose to refine “A2”. That is:

22 Chapter 2. Getting Started

ingrid

General grid settings

grid_settings:
--
Settings for grid generation (num cells, transforms, distortion_correction)
--
grid_generation:
distortion_correction:
all:
active: false # true, 1 also valid.
resolution: 1000
theta_max: 120.0
theta_min: 80.0

np_A: 9 # Create 9 poloidal cells in patches A1 and A2
np_F: 9 # Create 9 poloidal cells in patches F1 and F2

nr_2: 6 # Create 6 radial cells in layer 2

np_default: 3
nr_default: 3
Other grid settings

After making the addition, save the file and click “Create Grid”. INGRID will detect that an edit was made to the
parameter file and apply all changes. When Patch refinement has finalized, we are greeted with a new window showing
the updated grid.

2.4. Example: single-null configuration (introduction) 23

ingrid

We can continue to modify the grid in order to allocate more cells near the x-point. A natural choice would be to target
np_B and np_E. Doing so with the values np_B = 18 and np_E = 18 (double resolution for the larger patches), we
see our parameter file consists of:

General grid settings

grid_settings:
--
Settings for grid generation (num cells, transforms, distortion_correction)
--
grid_generation:
distortion_correction:
all:
active: false # true, 1 also valid.
resolution: 1000
theta_max: 120.0
theta_min: 80.0

(continues on next page)

24 Chapter 2. Getting Started

ingrid

(continued from previous page)

np_A: 9 # Create 9 poloidal cells in patches A1 and A2
np_F: 9 # Create 9 poloidal cells in patches F1 and F2
np_B: 18 # Create 18 poloidal cells in patches B1 and B2
np_E: 18 # Create 18 poloidal cells in patches E1 and E2

nr_2: 6 # Create 6 radial cells in layer 2

np_default: 3
nr_default: 3
Other grid settings

and produces a grid that we can see below (zoomed with Matplotlib toolbar provided in plots).

For the purposes of this introductory tutorial, let us continue to exporting the gridue file.

2.4. Example: single-null configuration (introduction) 25

ingrid

2.4.8 Exporting a gridue file

When the user is satisfied with the generated grid, a gridue formatted file can be generated by selecting “Export
gridue” shown below boxed in red.

From here, the user will be able to select a save location for their INGRID generated gridue file.

2.4.9 Summary

In this tutorial, we demonstrated how to generate a gridue file for an SNL configuration. This introductory tutorial is
not an exhaustive demonstration of INGRID’s capabilities for grid generation. Other capabilities such as customizing
the Patch map, applying poloidal/radial grid transformations, and mitigating cell-shearing can be found in the next
SNL example case.

2.5 Example: single-null configuration (further exploration)

Note: This tutorial assumes the reader has already explored the introductory SNL tutorial.

Some cases require enabling of certain attributes in the parameter file in order to successfully produce a grid.

Here we will detail said cases, and also dig deeper into INGRID’s capabilities for generating a grid. This tutorial will:

• Detail when adjustment to line-tracing algorithm is required by user

• Illustrate how to make adjustments to a generated Patch map

• Illustrate how to apply poloidal/radial transformations for non-uniform grid spacing

• Demonstrate how to reduce cell-shearing (increase orthoganality) of a grid via distortion_correction

2.5.1 Loading our example

The parameter file cmod_param.yml we will use in this tutorial is located in example_files/SNL.

Loading the parameter file in the GUI and viewing the data should show the following.

26 Chapter 2. Getting Started

ingrid

2.5. Example: single-null configuration (further exploration) 27

ingrid

Immediately we see that there is a line segment originating from the primary x-point and extending to the EFIT domain
boundary.

This is an indicator that INGRID will be overriding the default line tracing behavior from the primary x-point. As for
why and how we activate this capability will be detailed in the next section.

2.5.2 Standard SNL primary x-point line tracing pattern

INGRID utilizes specific line tracing procedures for each supported topology. Below is a cartoon of line tracing direc-
tions from the primary x-point.

Tracing in direction N, S, E, W are orthogonal to flux surfaces.

Note that line tracing from the W and E directions terminate upon intersection with the psi-max surface. Upon in-
tersection with the psi-max surface, line tracing continues along the poloidal line and searches for intersection with a
target plate.

In this particular example case we are exploring, intersection with the psi-max surface occurs past the target plate,
thus causing line tracing to fail.

We see this in the cartoon below when modifying the target plate geometry.

28 Chapter 2. Getting Started

ingrid

Although this can indeed be remedied by modifying the target plate geometry or adjusting psi-max surfaces, INGRID
allows the user to override the default orthogonal line tracing so that line tracing can continue without error. This
remedy is illustrated below.

2.5. Example: single-null configuration (further exploration) 29

ingrid

2.5.3 Overriding SNL primary x-point line tracing pattern

We can override the default orthogonal line tracing for both E and W directions with the entries use_xpt1_E and
use_xpt1_W that reside within patch_generation. This can be seen below.

grid_settings:
#...
other settings
#...
patch_generation:

use_xpt1_E: true
use_xpt1_W: false

Upon activating either entry and reloading the view into the parameter file, we will see line segment that extends from
the primary x-point. This segment is a marker indicating the new line tracing direction.

By default, no rotation is applied to the line tracing direction. We can adjust the direction with the entries xpt1_E_tilt
and xpt1_W_tilt. We see this below.

grid_settings:
#...
other settings
#...
patch_generation:

use_xpt1_E: true
use_xpt1_W: false
xpt1_E_tilt: 0.2 # radian value for rotation
xpt1_W_tilt: -0.8 # radian value for rotation

The user now has the tools to remedy the above situation. We can see in this case that xpt1_E_tilt: 0.2 provides
enough clearance such that intersection with the target plate will occur.

30 Chapter 2. Getting Started

ingrid

2.5. Example: single-null configuration (further exploration) 31

ingrid

Tip: When it is not immediately obvious from the loaded EFIT data that orthogonal line tracing will intersect psi-max
past the target plate, the user can change the visualization of the INGRID data from

filled contours to unfilled. We do this by changing view_mode: filled to view_mode: lines. We can control
the number of contour lines plotted by modifying the nlevs entry as well. This can help with visually imagining where
orthogonal line tracing will terminate.

2.5.4 Other settings for Patch map modification

Overriding orthogonal line tracing from the primary x-point is just one modification that can be made to influence a
final Patch map.

SNL line tracing for certain patches in the core will define boundaries based off intersection with the horizontal and
vertical lines that intersect the magnetic axis (midplane).

One such modification is applying an RZ translation to the magnetic-axis coordinate used to generate said Patch bound-
aries.

This can be controlled in the parameter file by editing entries rmagx_shift and zmagx_shift under
patch_generation in grid_settings.

grid_settings:
patch_generation:

rmagx_shift: 0.0 # Translate R coordinate
zmagx_shift: 0.0 # Translate Z coordinate

Saving the parameter file and reloading the view into the data will reflect the changes. The Patch map generated with
the translations above can be seen below.

32 Chapter 2. Getting Started

ingrid

In a similar manner to adjusting the angle of line tracing in the E and W directions from the primary x-point, we can
adjust the line segments extending from the magnetic-axis. These line segments define the east faces of patches B1 and
B2, as well as the west faces of patches E1 and E2.

The tilt of the inner-midplane and outer-midplane can be controlled with entries magx_tilt_1 and magx_tilt_2
respectively. These entries are contained within patch_generation in grid_settings.

grid_settings:
patch_generation:

magx_tilt_1: 0.0 # inner-midplane rotation (in radians)
magx_tilt_2: 0.0 # outer-midplane rotation (in radians)

Saving the parameter file and reloading the view into the data will reflect the changes. The Patch map generated with
the only the tilt values entered above can be seen below.

2.5. Example: single-null configuration (further exploration) 33

ingrid

Note: Midplane tilt entries are in radians and follow the standard counter-clockwise rotation direction.

Combining both together yields the following Patch map.

34 Chapter 2. Getting Started

ingrid

Tip: Applying these Patch modifications appropriately can allow one to increase cell density near primary x-point
without modifying np/nr values

On the left is the grid with no Patch map modifications for reference.

2.5. Example: single-null configuration (further exploration) 35

ingrid

2.5.5 Background knowledge for poloidal and radial grid transformations

INGRID allows the user to provided poloidal and radial grid distribution functions for generating non-uniform grids.

Before detailing how to invoke these features, some background on the Patch object itself.

Each Patch boundary is defined by 4 lines that we refer to as N, E, S, W. This allows for us to maintain a clockwise
orientation on the boundary of a Patch. Below is a cartoon illustrating the idea.

36 Chapter 2. Getting Started

ingrid

The N boundary (seen in dark blue) for Patch A2 begins at the max-psi strike-point on the target plate west of the primary
x-point (inner target plate for SNL case), and terminates at the B2 interface. The S boundary (seen in magenta) for
Patch A2 is oriented in the opposite direction and terminates upon intersection with the target plate.

The E and W boundaries (seen in dark green and cyan, respectively) are defined in the radial direction relative to the
N and S boundaries.

Note that this convention holds throughout the entire Patch map. We can see this by noticing that upon reaching Patch
F2, the E boundary is now defined by a portion of the (LSN outer) target plate.

Note: INGRID chooses to parameterize the **N face in length with parameter 𝑠 ∈ [0, 1] for poloidal distribution
functions. Similarly, INGRID chooses to parameterize the W face in increasing psi with parameter 𝑠 ∈ [0, 1] for radial
distribution functions. **

Now we discuss how the user specifies poloidal and radial grid transformations within the parameter file.

INGRID parses a string from the user in the form ``x, f(x)`` where :math:`x` indicates the dependent variable
and :math:`f(x)` is mathematical expression representing the distribution. Within the parameter file, we have
seen the string x, x utilized for entries radial_f_default and poloidal_f_default. INGRID interprets this as
applying a uniform distribution of vertices for defining the grid (consistent with what we have seen).

2.5. Example: single-null configuration (further exploration) 37

ingrid

Warning: Due to the parameterization 𝑠 ∈ [0, 1], defining 𝑓(𝑥) such that 𝑓 : [0, 1] → [0, 1] is important. Apply
appropriate normalization operations when utilizing non-trivial functions (see example below).

INGRID utilizes SymPy for generating a function from the user provided string. Standard Python arithmetic operations
are supported (+, -, *, /, **, . . .), as well as common mathematical functions such as exp and log.

2.5.6 Applying poloidal and radial grid transformations

In general, we adopt a notation similar to specifying np/nr cells. Below is a snippet of a YAML file with default poloidal
and radial transformation values.

grid_settings:
grid_generation:

...
Other grid_generation settings
...

poloidal_f_default: x, x # Global uniform poloidal
radial_f_default: x, x # Global uniform radial

Much like np_default and nr_default, entries poloidal_f_default and radial_f_default apply to poloidal
“columns” and radial “rows” in index space, respectively. The default appended to poloidal_f_ and radial_f_
tells INGRID to apply the corresponding transformation globally.

Poloidal transformations can be specified with the same convention as specifying poloidal cells (poloidal_f_A,
poloidal_f_B, . . . , poloidal_f_F).

Radial transformations follow the same convention (radial_f_1, radial_f_2), but also have an additional
radial_f_3 specifically for the inner-core region.

The following applies an exponential-like distribution (between 0 and 1) for the SOL, PF, and CORE. These transfor-
mations will generate grid cells that hug the primary separatrix slightly more than usual.

grid_settings:
grid_generation:

...
Other grid_generation settings
...

poloidal_f_default: x, x # Global uniform poloidal
radial_f_default: x, x # Global uniform radial
radial_f_1: x, 1-(1-exp(-(1-x)/0.4))/(1-exp(-1/0.4))
radial_f_2: x, (1-exp(-(x)/0.8))/(1-exp(-1/0.8))
radial_f_2: x, (1-exp(-(x)/0.8))/(1-exp(-1/0.8))

The resulting grid with transformations can be seen on the left, and the original grid with no transformations can be
seen on the right.

38 Chapter 2. Getting Started

https://www.sympy.org/en/index.html

ingrid

2.5.7 Reducing cell shearing via distortion_correction

INGRID does not enforce an orthogonality condition when generating a grid. INGRID allows the user to im-
pose angle constraints on cells within a generated grid in order to increase orthogonality. We do this via the
distortion_correction feature.

Below is an example of cell shearing and the motivation for INGRID’s distortion_correction.

This distortion_correction tool allows the user to specify angle constraints theta_min and theta_max in order
to mitigate cell shearing. INGRID will shift the cell vertex by increments of 1 / resolution until the resultant angle
is within the user constraints.

If the constraint cannot be satisfied (vertex leaves the Patch), INGRID will backtrack until the vertex is within the Patch
bounds.

Below is a snippet of the parameter file format showing distortion_correction applied globally.

grid_settings:
grid_generation:

distortion_correction:
(continues on next page)

2.5. Example: single-null configuration (further exploration) 39

ingrid

(continued from previous page)

Global settings
all:

active: True # toggle distortion_correction
resolution: 1000 # 1 / resolution step-size for shifting vertex
theta_max: 120.0 # angle constraint
theta_min: 80.0 # angle constraint

Patch specific settings can be provided in addition to global settings
(similar to how we specify np/nr for Patches on top of default np/nr)

Example: Specify distortion_correction for Patch A1

A1: # <-- (Patch name here can be changed)
active: false # toggle distortion_correction
resolution: 1000 # 1 / resolution step-size for shifting vertex
theta_max: 120.0 # angle constraint
theta_min: 80.0 # angle constraint

np_default: 5
nr_default: 5
poloidal_f_default: x, x
radial_f_default: x, x

Below is a side-by-side comparison of distortion_correction toggled on and off respectively.

40 Chapter 2. Getting Started

ingrid

We can see that the radial lines are indeed more orthogonal to the poloidal contours. Although only a mild effect in
this case, we have seen that distortion_correction can significantly reduce shearing and generate tidier grids in
others (example SF cases seen below).

This feature (in addition to those detailed above) is just another tool at a user’s disposal that need not be utilized in
every case.

2.5.8 Adjusting guard cell size

Guard cell size for a generated grid can be specified within the parameter file by editing entry guard_cell_eps within
grid_settings. That is:

General grid settings

grid_settings:

...
... Other grid_settings entries

(continues on next page)

2.5. Example: single-null configuration (further exploration) 41

ingrid

(continued from previous page)

...
guard_cell_eps: 0.00001 # Size of guard cells.

Note: Specification of guard cell size must be done prior to initiating grid generation (clicking Create Grid).

2.5.9 Summary

In this tutorial, we encountered a situation where parameter file modification is required for INGRID to successfully
generate a Patch map. This was resolved by modifying the line tracing procedure in order to accomodate the provided
geometry.

We also saw how the modification of the line tracing procedure falls into the over-arching category of INGRID tools
that allow the user to customize a Patch map.

Finally, we dove deeper into grid customization capabilities such as applying distortion_correction, poloidal and
radial transformations, and specifying guard cell size.

2.6 Example: Two x-points in domain (SF75 example)

Note: This tutorial assumes the reader has already read both the introductory SNL tutorial and the further exploration
SNL tutorial.

Here we will demonstrate how to generate a grid when there are two x-points in the domain. In particular, we will
generate a grid for a snowflake-75 (SF75) configuration.

Because INGRID internally handles the identification and classification of magnetic topology, the general steps detailed
here for generating a grid apply to all the other configurations with two x-points in the domain. The user will only need
to refer to provided diagrams of a configuration’s Patch map, x-point NSEW directions, and psi labels for a specific
configuration.

2.6.1 Loading our example

The parameter file SF75.yml we will use in this tutorial is located in example_files/SF75.

A key difference inside the parameter file is that now the entry num_xpt has an associated value of 2. This activates
INGRID’s topology classification when two x-points are present in the domain. With this, INGRID now expects more
parameter file entries from the user. These include:

• Approximate R coordinate of secondary x-point rxpt2

• Approximate Z coordinate of secondary x-point zxpt2

• Additional psi entries psi_2 and psi_pf_2

• Limiter data (or usage of EFIT domain bounds to act as a psuedo-limiter)

• Two additional target plates (when strike_pt_loc has an associated value of target plates)

Loading the parameter file in the GUI and viewing the data should show the following.

42 Chapter 2. Getting Started

ingrid

We can immediately see the presence of a secondary x-point, it’s corresponding separatrix, a rectangular (psuedo)
limiter and additionaly psi lines that we will use to generate a Patch map.

Before generating a Patch map, we discuss the SF75 layout.

2.6. Example: Two x-points in domain (SF75 example) 43

ingrid

2.6.2 The SF75 line-tracing pattern, x-point directions, and psi labels

The figure below shows a Patch map for general SF75 configuration.

The user should reference the above figure when prepping the parameter file for generating a Patch map by verifying
target plates are in valid locations relative to x-points and psi-boundaries.

First, note the target plate naming convention plate_W1, plate_E1, plate_W2, and plate_E2. Again, by removing
notions of “inner” and “outer” plates in the SNL case, we see that we now have a general naming convention that can
be applied to all configurations with two x-points in the domain.

This naming convention is defined by the NSEW directions for both the primary x-point (xpt1) and secondary x-point
(xpt2). Below we can see two figures that illustrate the NSEW directions for xpt1 and xpt2, respectively.

44 Chapter 2. Getting Started

ingrid

2.6. Example: Two x-points in domain (SF75 example) 45

ingrid

Finally, we illustrate the psi-labels associated with the psi-boundaries of the SF75 configuration.

46 Chapter 2. Getting Started

ingrid

The above shows we now have parameter file entries psi_2 and psi_pf_2 to assign values to.

We will see in other configurations (e.g. UDN, SF45, etc) that the location of the psi labels will vary. Because the
location of psi boundaries vary with each configuration, the user must carefully note which psi boundaries they are
dealing with.

In general, psi_1 will correspond to psi-max, psi_core remains set to the core psi value, psi_pf_1 will correspond
to the psi-surface we intersect by tracing S of xpt1, and psi_pf_2 will correspond to the psi-surface we intersect by
tracing S of xpt2. Typically, the psi_2 psi-boundary and strike-point locations for the psi-entries listed above often
vary.

2.6. Example: Two x-points in domain (SF75 example) 47

ingrid

2.6.3 Activating the limiter for Patch generation

Understanding INGRID limiter usage is an essential part of generating a Patch map for cases with two x-points in the
domain.

INGRID does not require the use of target plates for generating a Patch map if the user opts for using a limiter.

This is controlled within the parameter file with strike_pt_loc within the patch_generation block. We see this
below.

grid_settings:

...
other settings
...

patch_generation:
...
other settings
...

strike_pt_loc takes the values of 'limiter' or 'target_plates'
strike_pt_loc: limiter # generates a Patch map with a limiter rather than target␣

→˓plates

When strike_pt_loc is set to a value of limiter, INGRID will utilize all geometry data provided in the parameter
file block labeled limiter.

We can see the limiter settings in SF75.yml below.

grid_settings:

...
other settings
...

patch_generation:
...
other settings
...

strike_pt_loc takes the values of 'limiter' or 'target_plates'
strike_pt_loc: limiter # generates a Patch map with a limiter rather than target␣

→˓plates

Specifications for using a limiter
limiter:

file: '' # File name of .txt file with coordinates specifying limiter geometry.

use_efit_bounds: true # Use the EFIT domain boundary as a limiter

Coordinates: [(rmin, zmin), (rmax, zmin), (rmax, zmax), (rmin, zmax), (rmin, zmin)]

zshift: 0.0 # Shift the limiter geometry in the z-direction
(continues on next page)

48 Chapter 2. Getting Started

ingrid

(continued from previous page)

rshift: 0.0 # Shift the limiter geometry in the z-direction

Adjust shape of EFIT domain boundary psuedo-limiter in r coordinate
efit_buffer_r: 0.2 # Default value: 1.0e-2

Coordinates: [(rmin + efit_buffer_r, zmin), (rmax - efit_buffer_r, zmin),
(rmax - efit_buffer_r, zmax), (rmin + efit_buffer_r, zmax), (rmin +␣

→˓efit_buffer_r, zmin)]

Adjust shape of EFIT domain boundary psuedo-limiter in z coordinate
efit_buffer_z: 0.05 # Default value: 1.0e-2

Coordinates: [(rmin, zmin + efit_buffer_z), (rmax, zmin + efit_buffer_z),
(rmax, zmax - efit_buffer_z), (rmin, zmax - efit_buffer_z), (rmin,␣

→˓zmin + efit_buffer_z)]

Note: INGRID will utilize the default limiter data provided within the eqdsk file if no file is provided and
use_efit_bounds is set to False. If no limiter data is available in the eqdsk file, INGRID will set use_efit_bounds
to True.

Below are figures illustrating possible edits to the parameter-file limiter block entry (we will not be using these
values for the remainder of the tutorial).

First, setting use_efit_bounds to False (default eqdsk limiter data)

2.6. Example: Two x-points in domain (SF75 example) 49

ingrid

50 Chapter 2. Getting Started

ingrid

Next, setting use_efit_bounds back to True, but setting both efit_buffer_r and efit_buffer_z back to their
default values of 1.0e-2.

2.6. Example: Two x-points in domain (SF75 example) 51

ingrid

52 Chapter 2. Getting Started

ingrid

Warning: When setting use_efit_bounds to True, the user must provide a non-zero value for values
efit_buffer_r and efit_buffer_z.

2.6.4 INGRID identification of configuration

As mentioned in the previous section, understanding INGRID limiter usage is an essential part of generating a Patch
map for cases with two x-points in the domain.

This is because INGRID identifies a configuration by decomposing subset of the domain contained within the limiter
into three distinct regions: core, private-flux, and separatrix exterior.

We see this below with the core shaded in magenta, private-flux shaded in blue, and separatrix exterior with no filled
shading.

2.6. Example: Two x-points in domain (SF75 example) 53

ingrid

54 Chapter 2. Getting Started

ingrid

To emphasize the dependence on the limiter for decomposition, we also illustrate with setting both efit_buffer_r
and efit_buffer_z back to their default values of 1.0e-2.

2.6. Example: Two x-points in domain (SF75 example) 55

ingrid

56 Chapter 2. Getting Started

ingrid

It is up to the user to ensure the following is satisfied for successful identification of magnetic topology:
• The provided limiter forms a closed loop (note EFIT bounds do this by default and is therefore a useful tool for

classification)

• The Magnetic-axis is contained within the closed limiter geometry

• The primary x-point is contained within the closed limiter geometry

• The primary separatrix “legs” intersect the limiter walls and form a closed region

• The secondary x-point is contained within the closed limiter geometry

We can indeed see that our parameter file has been preset to satisfy all of the above.

2.6. Example: Two x-points in domain (SF75 example) 57

ingrid

58 Chapter 2. Getting Started

ingrid

2.6.5 Using target-plates for generating a Patch map

The user can opt for using target-plates rather than a limiter for generating a Patch map for cases with two x-points
in the domain. Setting the entry strike_pt_loc to target_plates tells INGRID to generate the Patch map using
geometry provided in the parameter file block target_plates. We see this snippet below.

grid_settings:

...
other settings
...

patch_generation:
...
other settings
...

strike_pt_loc takes the values of 'limiter' or 'target_plates'
strike_pt_loc: target_plates # generates a Patch map with a target_plates rather␣

→˓than limiter block

Specifications for using target plates
target_plates:

Target plate E of xpt1
plate_E1:
file: ../data/SF75/plate_E1.txt
rshift: 1.0
zshift: 0.28

Target plate E of xpt2
plate_E2:
file: ../data/SF75/plate_E2.txt
rshift: 0.45
zshift: 0.00

Target plate W of xpt1
plate_W1:
file: ../data/SF75/plate_W1.txt
rshift: -0.2
zshift: 0.2

Target plate W of xpt2
plate_W2:
file: ../data/SF75/plate_W2.txt
zshift: 0.0
rshift: 0.00

The user can refer to the diagrams earlier in the tutorial to see where the target plates above should reside in the domain.

By making the above edits, we then refresh our view of the data to obtain the following plot.

2.6. Example: Two x-points in domain (SF75 example) 59

ingrid

60 Chapter 2. Getting Started

ingrid

Indeed, we see there are now four target plates in the EFIT domain.

Note: The presence of the limiter in the figure is not a bug. Regardless of whether we decide to utilize the limiter
or target plates for generating a Patch map, INGRID still relies on the limiter to classify the magnetic topology. This is
why the user must be comfortable with limiter controls.

2.6.6 Creating the Patch map and grid

The majority of the effort for generating a Patch map goes into the preparation of the EFIT data. We indeed saw this
in the previous sections. From here, we carry out the usual process of generating a Patch map that we saw in the SNL
case.

All of the Patch map edit capabilities that we performed on the SNL cases are also available for all other cases with no
further explanation.

We proceed with Patch map generation and obtain the following Patch map when keeping strike_pt_loc set with a
value of target_plates.

2.6. Example: Two x-points in domain (SF75 example) 61

ingrid

62 Chapter 2. Getting Started

ingrid

If we had kept strike_pt_loc set to limiter, we would obtain the Patch map below.

2.6. Example: Two x-points in domain (SF75 example) 63

ingrid

64 Chapter 2. Getting Started

ingrid

All grid generating instructions detailed in the SNL case also apply to the SF cases. The only difference is the addition
of an additional control nr_3 that controls the Patch objects with name ending with 3.

Using np_default and nr_default with values of 3 produces the following grid when using target plates.

2.6. Example: Two x-points in domain (SF75 example) 65

ingrid

66 Chapter 2. Getting Started

ingrid

Using np_default and nr_default with values of 3 produces the following grid when using the limiter.

2.6. Example: Two x-points in domain (SF75 example) 67

ingrid

68 Chapter 2. Getting Started

ingrid

All other grid generation customization tools such as distortion_correction, poloidal_f_A - poloidal_f_I,
and radial_f_1 - radial_f_3 are utilized in the same ways we saw in the earlier SNL cases.

2.6. Example: Two x-points in domain (SF75 example) 69

ingrid

70 Chapter 2. Getting Started

CHAPTER

THREE

MODULE DOCUMENTATION

3.1 ingrid

Ingrid module for interfacing all grid generator capabilities.

This module contains the Ingrid class that drives all code functionality.

The Ingrid class is to encapsulate all functionality and allow the user to easily take advantage of advanced features of
the code.

class INGRID.ingrid.Ingrid(settings: dict = {}, **kwargs)
Bases: INGRID.utils.IngridUtils

The driver class of the grid generator. A user will be able to load all experimental data, create patch maps,
create grids, and export grids with the methods available. The GUI version of the Ingrid code is also accessed
exclusively through this class.

Parameters
• settings (optional) – Dictionary representation of the settings file. The dictionary is

obtained via a YAML dump while operating in gui mode. Providing no dictionary will pop-
ulate the Ingrid object with a default value settings attribute. Any missing entries provided
by a user will be populated with default values by Ingrid. (Refer to the Ingrid “Settings File
Format” for a complete descri ption of the settings dictionary)

• **kwargs – Keyword arguments for processing of input data. (See method ‘ProcessKey-
words’ in class ‘IngridUtils’ for a list of supported keywords)

Variables
• settings (dict) – Dictionary representation of the settings file.

• PlateData (dict) – Dictionary mapping target plates to their corresponding class ‘Line’
objects.

• LimiterData (Line) – Line class object representing tokamak limiter.

• magx (tuple) – (R, Z) coordinates of magnetic-axis (float entries).

• xpt1 (tuple) – (R, Z) coordinates of primary x-point (float entries).

• xpt2 (tuple) – (R, Z) coordinates of secondary x-point (float entries).

• PsiNorm (EfitData) – ‘EfitData’ class object containing normalized psi data calculated
from class attribute ‘PsiUNorm’.

• CurrentTopology (Topology) – Tokamak magnetic configuration type currently being
operated on. Class ‘Topology’ acts as thebase class for all magnetic configurations.

71

ingrid

AnalyzeTopology()→ None
Perform analysis on normalized psi to determine magnetic topolgy.

AutoRefineMagAxis()→ None
Refine magnetic axis RZ coordinates.

Will apply a root_finder method to ‘rmagx’ and ‘zmagx’ float values stored in attribute “set-
tings[‘grid_settings’]”.

AutoRefineXPoint()→ None
Refine primary x-point RZ coordinates.

Will apply a root_finder method to ‘rxpt’ and ‘zxpt’ float values stored in attribute “set-
tings[‘grid_settings’]”.

AutoRefineXPoint2()→ None
Refine secondary x-point RZ coordinates.

Will apply a root_finder method to ‘rxpt2’ and ‘zxpt2’ float values stored in attribute “set-
tings[‘grid_settings’]”.

CalcPsiNorm()→ None
Normalize psi data to a refined magnetic axis and primary x-point

ClearLegend(ax)→ None
Safely remove the legend form the normalized psi data.

ConstructGrid(NewFig: bool = True, ShowVertices: bool = False)→ None
Refine a generated patch map into a grid for exporting.

Parameters
• NewFig (bool, optional) – Plot the created grid on a new figure.

• ShowVertices (bool, optional) – Plot vertices in refined grid with bolded markers.

• ListPatches (bool, optional) – Generate a grid for a particular patch. Requires the
correct patch name associated with the ‘Patch’ object.

Warning: Grid generation is order dependent. Specifying a particular patch to generate a
grid would only be done in rare cases and require the user to know dependencies for the
particular patch.

ConstructPatches()→ None
Create a patch map that can be refined into a grid.

This method assumes the user has either loaded patch data from a previous Ingrid session (see ‘Load-
Patches’), or that the user has already successfully called method ‘AnalyzeTopology’.

Should the user want to automatically enable patch saving, the user should set the entry

‘settings[‘’patch_data”][‘’preferences”][‘’new_file”]’

with a value of ‘True’.

CreatePatches()→ None
An alias for ConstructPatches. See ConstructPatches for more details.

CreateSubgrid(NewFig: bool = True, ShowVertices: bool = False)→ None
Alias for ConstructGrid. See ConstructGrid for documentation.

72 Chapter 3. Module Documentation

ingrid

ExportGridue(fname: str = 'gridue', guard_cell_eps=0.001)→ None
Export a gridue file for the created grid.

Parameters fname (str, optional) – Name of gridue file to save.

static ImportGridue(fname: str = 'gridue')→ dict
Import UEDGE grid file as dictionary.

Parameters fname (str, optional) – Path/file name to gridue formatted file.

Returns A dict containing header and body information from the gridue file.

LoadEFIT(fpath: str)→ None

LoadGeometryData(geo_items: dict)→ None
Load strike geometry RZ coordinates from external file.

Said external file must be of type ‘.txt’ or a properly formatted ‘.npy’ file.

Parameters geo_items (dict) – The argument dict specifying which strike geometry to load
data into.

Notes

geo_items is of the form: {geo_name: data_fname, ... }

where both geo_name and data_fname are of type str.

Multiple data_fname files can be loaded at once in a manner similar to method SetGeometry().

Raises
• ValueError – If ‘geo_items’ is not type ‘dict’.

• ValueError – If invalid ‘geo_items’ key provided.

• ValueError – If data_fname entry is not of type ‘str’.

• ValueError – If data_fname is not a file.

• ValueError – If data_fname file is not of format ‘.txt’ or ‘.npy’

LoadPatches(fname: str = '')→ None
Load patches stored in an Ingrid generated ‘.npy’ file.

Parameters fname (str, optional) –

Path to patch data. If no fname is provided to method ‘LoadPatches’, Ingrid code will check
the settings ‘dict’ for a file under entry settings['patch_data']['file']

PlotEastWestXpt1Ref(ax: Optional[object] = None)→ None
Plot midplane line through magnetic axis with any applied transformations specified in settings.

This method can be used to inspect the effects of ‘magx_tilt_1’, ‘magx_tilt_2’, ‘rmagx_shift’, and
‘zmagx_shift’.

PlotEastWestXpt2Ref(ax: Optional[object] = None)→ None
Plot midplane line through magnetic axis with any applied transformations specified in settings.

This method can be used to inspect the effects of ‘magx_tilt_1’, ‘magx_tilt_2’, ‘rmagx_shift’, and
‘zmagx_shift’.

3.1. ingrid 73

ingrid

PlotGrid()→ None
Plot the grid that was generated with method ‘ConstructGrid’.

static PlotGridue(GridueParams: dict, edgecolor='black', ax: Optional[object] = None)
Plot UEDGE grid from ‘dict’ obtained from method ‘ImportGridue’

Parameters
• GridueParams (dict) – Gridue header and body information as a dictionary. (See method

ImportGridue)

• edgecolor (str, optional) – Color of grid.

• ax (object, optional) – Matplotlib axes to plot on.

PlotLimiter(ax: Optional[object] = None)→ None
Plot limiter geometry.

PlotMidplane(ax: Optional[object] = None)→ None
Plot midplane line through magnetic axis with any applied transformations specified in settings.

This method can be used to inspect the effects of ‘magx_tilt_1’, ‘magx_tilt_2’, ‘rmagx_shift’, and
‘zmagx_shift’.

PlotPatches()→ None
Plot the patch map that was generated with method ‘CreatePatches’

PlotPsiLevel(efit_psi: object, level: float, Label: str = '')→ None
Plot a contour corresponding to a psi level.

Parameters
• efit_psi (EfitData) – The ‘EfitData’ object to get the psi data from.

• level (float) – The psi value to plot.

• Label (str, optional) – Label to provide to matplotlib.pyplot.contour.

PlotPsiNorm(view_mode: str = 'filled')→ None
Plot normalized psi data.

PlotPsiNormBounds()→ None
Plot contour lines associated with psi boundary values provided.

This method extracts psi values from the ‘settings’ dict and plots the psi level. In addition to the psi values
in ‘settings’, the primary and, if applicable, secondary separatrix are plotted as well.

If the user is operating on a single null configuration, the psi values plotted are ‘psi_1’, ‘psi_core’,
‘psi_pf_1’.

If the user is operating on a case with two x-points, the psi values are the same as above but with ‘psi_1’,
‘psi_2’, and ‘psi_pf_2’ also included in the plot.

PlotPsiNormMagReference(ax: Optional[object] = None)→ None
Plot a marker on the magnetic axis and all x-points of interest.

PlotPsiUNorm()→ None
Plot unnormalized psi data.

74 Chapter 3. Module Documentation

ingrid

PlotStrikeGeometry(ax: Optional[object] = None)→ None
Plot all strike geometry to be used for drawing the Patch Map.

Checks the central INGRID settings attribute for whether settings['patch_generation']['strike_pt_loc']
is True or if settings['grid_settings']['num_xpt'] is equal to 2 in order to determine whether or
not to plot the limiter geometry.

Otherwise only any loaded target plates will be plotted.

PlotSubgrid()→ None
Alias for method PlotGrid. See PlotGrid for documentation.

PlotTargetPlate(plate_key: str, color: str = 'red', ax: Optional[object] = None)→ None
Plot a target plate corresponding to a plate key.

Parameters
• plate_key (str) – An Ingrid supported target plate key (see method SetGeometry for

supported plate keys)

• color (str, optional) – Color to provide to matplotlib

PlotTargetPlates(ax: Optional[object] = None)→ None
Plot all PlateData and remove outdated plate line artists.

PlotTopologyAnalysis()→ None
Shade the private flux, core, and show where the secondary x-point travels.

This method can be used to interpret which type of configuration the user is handling.

PrintSummaryInput()→ None
Print a summary of the currently loaded data files

Will print relevant EQDSK, patch data files, target plate files, and limiter files.

PrintSummaryParams()→ None
Print a summary of key settings values.

static ReadYamlFile(FileName: str)→ dict
Read a yaml file and return a dictionary

Parameters FileName (str) – Path/file name of ‘.yml’ parameter file represented as dictionary.

Returns Settings file represented as a dictionary

Raises IOError – If error occurs while loading yml file.:

RefreshSettings()

RemovePlotLine(label: str, ax: Optional[object] = None)→ None

RemovePlotPatch(label: str, ax: Optional[object] = None)→ None

RemovePlotPoint(label: str, ax: Optional[object] = None)→ None

SaveGeometryData(geo_items: dict, timestamp: bool = False)→ None
Save strike geometry Line object RZ coordinates as ‘.npy’ file.

Geometry data files created with this method can be used in the INGRID parameter file.

Parameters

3.1. ingrid 75

ingrid

• geo_items (dict) – A dictionary specifying which target plate to save and the file
name/path. Said dictionary takes the following form:

{geo_name: data_fname, ... }

Where both geo_name and data_fname are of type str. Multiple data_fname files can be
saved at once in a manner similar to method ‘SetGeometry’ (see documentation for ‘Set-
Geometry’).

• timestamp (bool, optional) – Append a time stamp to the end of the files.

Raises
• ValueError – If ‘geo_items’ is not type ‘dict’.

• ValueError – If invalid ‘geo_items’ key provided.

• ValueError – If data_fname entry is not of type ‘str’.

• ValueError – If data_fname entry is an empty string.

• ValueError – If requested strike geometry Line to save has no data.

SavePatches(fname: str = '')→ None
Save patches as ‘.npy’ file for later reconstruction in Ingrid.

This file contains the information required to reconstruct patches at a later time and bypass the line_tracing.

Parameters fname (str, optional) – Name of file/location for patch data.

SaveSettingsFile(fname: str = '', settings: dict = {})→ pathlib.Path
Save a new settings .yml file.

Parameters
• fname (optional) – Name of new settings ‘.yml’ file. If default value of ‘’, then Ingrid

will generate a ‘.yml’ file named ‘INGRID_Session’ appended with a timestamp.

• settings (optional) – Ingrid settings dictionary to dump into the ‘.yml’ file. Defaults
to empty dict which produces a template settings file.

Returns A Path instance representing the saved YAML file.

SetGeometry(geo_items: dict, rshift: float = 0.0, zshift: float = 0.0)→ None
Define and load the tokamak strike geometry into the Ingrid object. Allows the user to set target plate data
and/or limiter data that will be used to generate a patch map.

Parameters
• geo_items (dict) – Argument dict specifying which item(s) to set and by what way.

• rshift (float, optional) – Translate ‘geo_items’ to coordinate R’, with R’ = R +
rshift. Will override all ‘rshift’ provided entries in ‘geo_items’.

• zshift (float, optional) – Translate ‘geo_items’ to coordinate Z’, with Z’ = Z +
zshift. Will override all ‘zshift’ provided entries in ‘geo_items’.

76 Chapter 3. Module Documentation

ingrid

Notes

Multiple geometry items can be set at once, but the following key-value format must be obeyed for any
number of entries:

{geo_key: geo_item}

All keys for ‘geo_items’ are type ‘str’. Accepted key values are as follows:

Geometry Accepted Keys (str)
Plate W1 plate_W1, W1
Plate E1 plate_E1, W1
Plate W2 plate_W2, W1
Plate E2 plate_E2, W1
Limiter limiter, wall

The above keys are NOT case sensitive.
Corresponding key values can vary in data type depending on means of setting geometry. The types and
their usage are as follows:

‘str’: Path to ‘.txt’ file containing coordinate data or to Ingrid generated ‘.npy’ file (obtained via methods

‘SaveLimiterData’ and ‘SaveTargetPlateData’). Note: When setting Limiter geometry, the user can provide
the value ‘default’ to set limiter data to that which is contained in the loaded neqdsk file.

‘list’, ‘tuple’: Iterables provided as values must be of length == 2. The first entry corresponds to R coordi-
nate information, and the second entry corresponds to Z coordinate information. This information can be
in the form of a list or NumPy array with shape == (N,).

‘dict’: One can map to a dictionary taking on a variety of formats depending on need.

Setting geometry with explicit RZ coordinates: {‘R’: R_data, ‘Z’: z_data} Where R_data and Z_data are
in the form of a list or NumPy array with shape == (N,) as above.

Setting geometry with data from external file: {‘file’: str}

Notes: The above dict option support keys ‘rshift’ and ‘zshift’ for the user to provide transformations to
individual geometry items (see examples).

Because the core ‘settings’ attribute contained by the Ingrid class contains dict structures itself, the user
can also provide settings[‘limiter’] and settings[‘target_plates’][k] to method ‘SetGeometry’ (where k cor-
responds to a plate key).

Examples

Setting default limiter data contained in loaded neqdsk file:

>>> MyIG = Ingrid()
>>> MyIG.SetGeometry({'limiter': 'default'})

Setting target plate ‘E1’ with numpy array:

>>> MyIG = Ingrid()
>>> MyIG.SetGeometry({'E1': 'E1_data.npy'})

Setting limiter data with Ingrid ‘.npy’ file:

3.1. ingrid 77

ingrid

>>> MyIG = Ingrid()
>>> MyIG.SetGeometry({'limiter': 'LimiterData.npy'})

Setting both target plates ‘W1’ and ‘E1’ with ‘.txt’ and ‘.npy’ files while only applying rshift and zshift to
target plate ‘E1’ (Note the dict structure used for specifying ‘E1’):

>>> MyIG = Ingrid()
>>> geometry_dict = {
... 'W1': 'W1_data.txt',
... 'E1': {
... 'file': 'E1_data.npy',
... 'rshift': 1.23, 'zshift': 3.14
... }
... }
>>> MyIG.SetGeometry(geometry_dict)

Setting plate ‘W2’ with user provided NumPy array for RZ coordinates:

>>> MyIG = Ingrid()
>>> R_data = my_numpy_array_1
>>> Z_data = my_numpy_array_2
>>> RZ_dict = {'R': my_numpy_array_1, 'Z': my_numpy_array_2}
>>> MyIG.SetGeometry({'plate_W1': RZ_dict})

Raises
• ValueError – If file path provided does not lead to actual file.

• ValueError – If file provided is not of suffix ‘.txt’ or ‘.npy’.

• ValueError – If invalid ‘geo_items’ key provided.

• ValueError – If ‘geo_items’ dict value contains invalid key.

• ValueError – If value associated with ‘geo_items’ key is not of supported data type.

SetMagReference()→ None
Set the appropriate reference points in the domain. Namely the magnetic-axis, primary x-point, and (if
applicable), secondary x-point.

SetTargetPlates()→ None
Define target plate geometries based off of settings dict specifications.

This is a convenience method that calls SetGeometry.

SetTopology(topology: str)→ None
Initialize the current topology to a particular magnetic topology.

Parameters topology (str) – String literal corresponding to which magnetic topology to ini-
tialize.

Values can be: ’LSN’: Lower Single Null ‘USN’: Upper Single Null ‘UDN’: Unbalanced
Double Null ‘SF15’: Snowflake-15 ‘SF45’: Snowflake-45 ‘SF75’: Snowflake-75 ‘SF105’:
Snowflake-105 ‘SF135’: Snowflake-135 ‘SF165’: Snowflake-165

Raises ValueError – If user provided unrecognized string entry.

78 Chapter 3. Module Documentation

ingrid

ShowSetup(view_mode: str = 'filled')→ None
Show Ingrid setup that a patch map will be generated from.

This method plots normalized psi data, psi boundaries, strike geometry, and midplane lines through the
magnetic axis.

StartGUI()→ None
Start GUI for Ingrid.

Will assume usage on a machine with tk GUI capabilities. No prior settings file is required as the user will
be prompted with an option to generate a new file.

StartSetup(**kwargs)→ None
A collection of essential tasks before generating a patch map from scratch.

The user should ensure that the ‘settings’ dict is populated with the correct paths to relevant neqdsk data
and geometry files.

The user should ensure ‘settings[‘’grid_settings”][‘’num_xpt’] is set with the correct integer value.

INGRID.ingrid.QuickStart()→ None
Start Ingrid in gui mode with default settings.

Rather than providing data to the class constructor, a user can opt to start Ingrid immediately in it’s gui form.
This is useful for users who are not familiar with the Ingrid class and it’s capabiliites. Advanced users may still
find QuickStart useful, but would also use the code in self-authored scripts.

3.2 topologies

The topologies subpackage contains modules for INGRID supported grid topologies.

3.2.1 topologies.sf105

The sf105 module contains SF105 for representing a Snowflake-105 topology/configuration.

Child of base utils.TopologyUtils.

class INGRID.topologies.sf105.SF105(Ingrid_obj: ingrid.Ingrid, config: str = 'SF105')
Bases: INGRID.utils.TopologyUtils

The SF105 class for handling Snowflake-105 configurations within a tokamak.

Parameters
• Ingrid_obj (Ingrid) – Ingrid object the SF105 object is being managed by.

• config (str, optional) – String code representing the configuration.

Variables
• ConnexionMap (dict) – A mapping defining dependencies between Patch objects for grid

generation.

• patches (dict) – The collection of Patch objects representing the topology.

3.2. topologies 79

ingrid

AdjustGrid()→ None
Adjust the grid so that no holes occur at x-points, and cell grid faces are alligned

A small epsilon radius is swept out around x-points during Patch line tracing. This simple tidies up a grid.

Parameters patch (Patch) – The patch to tidy up (will only adjust if next to x-point).

AdjustPatch(patch)

GroupPatches()

OrderPatches()

construct_patches()

set_gridue()

Prepares a gridue_settings dictionary with required data for writing a gridue file.

3.2.2 topologies.sf135

The sf135 module contains SF135 for representing a Snowflake-135 topology/configuration.

Child of base utils.TopologyUtils.

class INGRID.topologies.sf135.SF135(Ingrid_obj: ingrid.Ingrid, config: str = 'SF135')
Bases: INGRID.utils.TopologyUtils

The SF135 class for handling Snowflake-135 configurations within a tokamak.

Parameters
• Ingrid_obj (Ingrid) – Ingrid object the SF135 object is being managed by.

• config (str, optional) – String code representing the configuration.

Variables
• ConnexionMap (dict) – A mapping defining dependencies between Patch objects for grid

generation.

• patches (dict) – The collection of Patch objects representing the topology.

AdjustGrid()→ None
Adjust the grid so that no holes occur at x-points, and cell grid faces are alligned

A small epsilon radius is swept out around x-points during Patch line tracing. This simple tidies up a grid.

Parameters patch (Patch) – The patch to tidy up (will only adjust if next to x-point).

AdjustPatch(patch)

GroupPatches()

OrderPatches()

construct_patches()

Draws lines and creates patches for both USN and LSN configurations.

Patch Labeling Key: I: Inner, O: Outer, DL: Divertor Leg, PF: Private Flux, T: Top, B: Bottom, S: Scrape
Off Layer, C: Core.

80 Chapter 3. Module Documentation

ingrid

set_gridue()

Prepares a gridue_settings dictionary with required data for writing a gridue file.

3.2.3 topologies.sf15

The sf15 module contains SF15 for representing a Snowflake-15 topology/configuration.

Child of base utils.TopologyUtils.

class INGRID.topologies.sf15.SF15(Ingrid_obj: ingrid.Ingrid, config: str = 'SF15')
Bases: INGRID.utils.TopologyUtils

The SF15 class for handling Snowflake-15 configurations within a tokamak.

Parameters
• Ingrid_obj (Ingrid) – Ingrid object the SF15 object is being managed by.

• config (str, optional) – String code representing the configuration.

Variables
• ConnexionMap (dict) – A mapping defining dependencies between Patch objects for grid

generation.

• patches (dict) – The collection of Patch objects representing the topology.

• ConnexionMap – A mapping defining dependencies between Patch objects for grid genera-
tion.

• patches – The collection of Patch objects representing the topology.

AdjustGrid()→ None
Adjust the grid so that no holes occur at x-points, and cell grid faces are alligned

A small epsilon radius is swept out around x-points during Patch line tracing. This simple tidies up a grid.

Parameters patch (Patch) – The patch to tidy up (will only adjust if next to x-point).

AdjustPatch(patch)

GroupPatches()

OrderPatches()

construct_patches()

set_gridue()

Prepares a gridue_settings dictionary with required data for writing a gridue file.

3.2. topologies 81

ingrid

3.2.4 topologies.sf165

The sf165 module contains SF165 for representing a Snowflake-165 topology/configuration.

Child of base utils.TopologyUtils.

class INGRID.topologies.sf165.SF165(Ingrid_obj: ingrid.Ingrid, config: str = 'SF165')
Bases: INGRID.utils.TopologyUtils

The SF165 class for handling Snowflake-165 configurations within a tokamak.

Parameters
• Ingrid_obj (Ingrid) – Ingrid object the SF165 object is being managed by.

• config (str, optional) – String code representing the configuration.

Variables
• ConnexionMap (dict) – A mapping defining dependencies between Patch objects for grid

generation.

• patches (dict) – The collection of Patch objects representing the topology.

AdjustGrid()→ None
Adjust the grid so that no holes occur at x-points, and cell grid faces are alligned

A small epsilon radius is swept out around x-points during Patch line tracing. This simple tidies up a grid.

Parameters patch (Patch) – The patch to tidy up (will only adjust if next to x-point).

AdjustPatch(patch)

GroupPatches()

OrderPatches()

construct_patches()

Draws lines and creates patches for both USN and LSN configurations.

Patch Labeling Key: I: Inner, O: Outer, DL: Divertor Leg, PF: Private Flux, T: Top, B: Bottom, S: Scrape
Off Layer, C: Core.

set_gridue()

Prepares a gridue_settings dictionary with required data for writing a gridue file.

3.2.5 topologies.sf45

The sf45 module contains SF45 for representing a Snowflake-45 topology/configuration.

Child of base utils.TopologyUtils.

class INGRID.topologies.sf45.SF45(Ingrid_obj: ingrid.Ingrid, config: str = 'SF45')
Bases: INGRID.utils.TopologyUtils

The SF45 class for handling Snowflake-45 configurations within a tokamak.

Parameters
• Ingrid_obj (Ingrid) – Ingrid object the SF45 object is being managed by.

82 Chapter 3. Module Documentation

ingrid

• config (str, optional) – String code representing the configuration.

Variables
• ConnexionMap (dict) – A mapping defining dependencies between Patch objects for grid

generation.

• patches (dict) – The collection of Patch objects representing the topology.

AdjustGrid()→ None
Adjust the grid so that no holes occur at x-points, and cell grid faces are alligned

A small epsilon radius is swept out around x-points during Patch line tracing. This simple tidies up a grid.

Parameters patch (Patch) – The patch to tidy up (will only adjust if next to x-point).

AdjustPatch(patch)

GroupPatches()

OrderPatches()

construct_patches()

set_gridue()

Prepares a gridue_settings dictionary with required data for writing a gridue file.

3.2.6 topologies.sf75

The sf75 module contains SF75 for representing a Snowflake-75 topology/configuration.

Child of base utils.TopologyUtils.

class INGRID.topologies.sf75.SF75(Ingrid_obj: ingrid.Ingrid, config: str = 'SF75')
Bases: INGRID.utils.TopologyUtils

The SF75 class for handling Snowflake-75 configurations within a tokamak.

Parameters
• Ingrid_obj (Ingrid) – Ingrid object the SF75 object is being managed by.

• config (str, optional) – String code representing the configuration.

Variables
• ConnexionMap (dict) – A mapping defining dependencies between Patch objects for grid

generation.

• patches (dict) – The collection of Patch objects representing the topology.

AdjustGrid()→ None
Adjust the grid so that no holes occur at x-points, and cell grid faces are alligned

A small epsilon radius is swept out around x-points during Patch line tracing. This simple tidies up a grid.

Parameters patch (Patch) – The patch to tidy up (will only adjust if next to x-point).

AdjustPatch(patch)

GroupPatches()

3.2. topologies 83

ingrid

OrderPatches()

construct_patches()

set_gridue()

Prepares a gridue_settings dictionary with required data for writing a gridue file.

3.2.7 topologies.snl

The snl module contains SNL for representing a single-null topology/configuration.

Child of base utils.TopologyUtils.

class INGRID.topologies.snl.SNL(Ingrid_obj: ingrid.Ingrid, config: str)
Bases: INGRID.utils.TopologyUtils

The SNL class for handling Lower Single Null (LSN) and Upper Single Null (USN) configurations within a
tokamak.

Parameters
• Ingrid_obj (Ingrid) – Ingrid object the SNL object is being managed by.

• config (str) – String code representing the configuration (for SNL it can be ‘LSN’ or
‘USN’).

Variables
• ConnexionMap (dict) – A mapping defining dependencies between Patch objects for grid

generation.

• patches (dict) – The collection of Patch objects representing the topology.

AdjustGrid()→ None
Adjust the grid so that no holes occur at x-points, and cell grid faces are alligned

A small epsilon radius is swept out around x-points during Patch line tracing. This simple tidies up a grid.

Parameters patch (Patch) – The patch to tidy up (will only adjust if next to x-point).

AdjustPatch(patch)

GroupPatches()

OrderPatches()

construct_patches()

Create the Patch map with LineTracing.

set_gridue()

Prepares a gridue_settings dictionary with required data for writing a gridue file.

84 Chapter 3. Module Documentation

ingrid

3.2.8 topologies.udn

The udn module contains UDN for representing an unbalanced double-null topology/configuration.

Child of base utils.TopologyUtils.

class INGRID.topologies.udn.UDN(Ingrid_obj: ingrid.Ingrid, config: UDN)
Bases: INGRID.utils.TopologyUtils

The UDN class for handling Unbalanced Double Null configurations within a tokamak.

Parameters
• Ingrid_obj (Ingrid) – Ingrid object the UDN object is being managed by.

• config (str, optional) – String code representing the configuration.

Variables
• ConnexionMap (dict) – A mapping defining dependencies between Patch objects for grid

generation.

• patches (dict) – The collection of Patch objects representing the topology.

AdjustGrid()→ None
Adjust the grid so that no holes occur at x-points, and cell grid faces are alligned

A small epsilon radius is swept out around x-points during Patch line tracing. This simple tidies up a grid.

Parameters patch (Patch) – The patch to tidy up (will only adjust if next to x-point).

AdjustPatch(patch)

GroupPatches()

OrderPatches()

construct_patches()

set_gridue()→ dict
Prepares a gridue_settings dictionary with required data for writing a gridue file.

3.3 utils

Helper classes for the ingrid module and topologies package.

This module contains classes IngridUtils and TopologyUtils. These classes encapsulate much of the critical methods
for handling file I/O, topology analysis, generating patch maps, and generating grids.

class INGRID.utils.IngridUtils(settings: dict = {}, **kwargs)
Bases: object

The base class for ingrid.Ingrid that handles backend management of key Ingrid capabilities. This class can
be directly utilized by advanced users and developers of the Ingrid code.

Class IngridUtils encapsulates implementation details of file I/O, keyword parsing, sorting of geometry, and
managing of other helper classes such as line_tracing.LineTracing and interpol.EfitData.

Parameters

3.3. utils 85

ingrid

• settings (optional) – Dictionary representation of the settings file. The dictionary is
obtained via a YAML dump while operating in gui mode. Providing no dictionary will pop-
ulate the Ingrid object with a default value settings attribute. Any missing entries provided
by a user will be populated with default values by Ingrid. (Refer to the Ingrid “Settings File
Format” for a complete descri ption of the settings dictionary)

• **kwargs – Keyword arguments for processing of input data. (See method ‘ProcessKey-
words’ in class ‘IngridUtils’ for a list of supported keywords)

Variables
• InputFile (str) – Path to the parameter file.

• config (str) – The configuration of the topology.

• settings (dict) – Core settings dictionary containing all data used for generating patches
and grids.

• settings_lookup (dict) – Top level entries of the parameter file and convenience attribute
for later accessing of entries.

• default_values_lookup (dict) – General structure of YAML settings file in dictionary
form.

• default_grid_settings (dict) – Default entries for key grid_settings in the YAML set-
tings file.

• default_integrator_settings (dict) – Default entries for key integrator_settings in
the YAML settings file.

• default_target_plate_settings (dict) – Default entries for key target_plates in the
YAML settings file.

• default_limiter_settings (dict) – Default entries for key limiter in the YAML set-
tings file.

• default_patch_data_settings (dict) – Default entries for key patch_data in the
YAML settings file.

• default_DEBUG_settings (dict) – Default entries for key DEBUG in the YAML settings
file.

• PlateData (dict) – Dictionary containing Line objects that correspond to target plates
loaded by the user.

• OMFIT_psi (OMFITgeqdsk) – Instance of class used to interface G files generated by EFIT.

• PsiUNorm (EfitData) – EfitData class object containing unormalized psi data from pro-
vided neqdsk file in settings.

• LimiterData (Line) – Line class object representing tokamak limiter.

• magx (tuple) – (R, Z) coordinates of magnetic-axis (float entries).

• xpt1 (tuple) – (R, Z) coordinates of primary x-point (float entries).

• xpt2 (tuple) – (R, Z) coordinates of secondary x-point (float entries).

• LineTracer (LineTracing) – LineTracing instance that for topology analysis and
poloidal/radial tracing.

CheckPatches(verbose: bool = False)→ None
Check that Patch objects adjacent to target plates are monotonic in psi.

This method is a wrapper for the CheckPatches method specific to the current topology being operated on.

86 Chapter 3. Module Documentation

ingrid

Parameters verbose (bool, optional) – Flag for printing full output to terminal. Defaults
to False.

ClassifyTopology(visual=False)→ None
Determine the topology that is being operated on.

Inspects the settings['grid_settings']['num_xpt'] entry to determine which classification scheme
to employ.

Parameters visual (bool, optional) – Flag for activating the analysis of x-points in a visual
DEBUG mode. Default is False.

Raises ValueError – If user specifies settings['grid_settings']['num_xpt'] with
value other than 1 (int) or 2 (int).

FindMagAxis(r: float, z: float)→ None
Refine the entries and assign to the magnetic-axis in settings.

Parameters
• r (float) – R coordinate of magnetic-axis guess.

• z (float) – Z coordinate of magnetic-axis guess.

FindXPoint(r: float, z: float)→ None
Refine the entries and assign to the primary x-point in settings.

Parameters
• r (float) – R coordinate of primary x-point guess.

• z (float) – Z coordinate of primary x-point guess.

FindXPoint2(r: float, z: float)→ None
Refine the entries and assign to the secondary x-point in settings.

Parameters
• r (float) – R coordinate of secondary x-point guess.

• z (float) – Z coordinate of secondary x-point guess.

GetMagxData()→ tuple
Return the magnetic-axis (r,z) coordinates and associated un-normalized psi value.

Returns A 3-tuple of r-z coordinates and scalar psi value

GetPatchTagMap(config: str)→ dict
Get the Patch-Tag mapping for a particular configuration.

This mapping is used to identify patch names with a particular patch tag code.

Parameters config (str) – The configuration to get the patch tag map for.

Returns A dictionary containing the tag to patch name mappings.

GetXptData()→ dict
Return all x-point (r,z) coordinates and associated un-normalized psi values.

Returns A dict containing an (r, z, psi) entry for each x-point

OMFIT_read_psi()→ None
Python class to read the psi data in from an ascii file.

Saves the boundary information and generates an EfitData instance.

3.3. utils 87

ingrid

OrderLimiter()→ None
Ensures the limiter points are oriented clockwise around the magnetic axis (per INGRID convention).

This method requires the limiter geometry to have been defined as well as the magnetic axis to be refined.

Notes

Ordering of limiter is crucial when using limiter for creating a patch map. This occurs for all cases with
two x-points.

OrderTargetPlate(plate_key: str)→ None
Ensures the target plate points are oriented clockwise around the magnetic axis (per INGRID convention).

Parameters plate_key (str) – The key corresponding to target plate Line object to sort.

Notes

Ordering of target plates is crucial when using target plates for creating a patch map.

Valid plate keys are as follows:

Plate Accepted Keys (str)
Plate W1 plate_W1, W1
Plate E1 plate_E1, E1
Plate W2 plate_W2, W2
Plate E2 plate_E2, E2

OrderTargetPlates()→ None
Convenience method for ordering target plate Point objects.

ParseTxtCoordinates(fpath: str, rshift: float = 0.0, zshift: float = 0.0)→ tuple
Extract the (R,Z) coordinates from a .txt file.

Files of types .txt must conform to the following format:

𝑟0, 𝑧0

𝑟1, 𝑧1

𝑟2, 𝑧2

.....

𝑟𝑛, 𝑧𝑛

Put otherwise, r and z values are differentiated by a comma and each coordinate must appear on a new line
withing the file.

If a line starts with the character ‘#’, it will be skipped.

Parameters
• fpath (str) – The path to the text file containing (R, Z) coordinate entries.

• rshift (float, optional) – Applies a translation to the R coordinate of the text file
entries.

• zshift (float, optional) – Applies a translation to the Z coordinate of the text file
entries.

Returns A 2-tuple (R, Z) with list entries containing R and Z data respectively.

88 Chapter 3. Module Documentation

ingrid

Raises
• IOError – If error occurs while reading text file.

• ValueError – If fpath string provided leads to an invalid file.

PopulateSettings(settings: dict, verbose: bool = True)→ None
Populate a settings dict with any missing entries that INGRID may need.

This should be used to screen for any illegal parameter file entries and to ensure clean data entry.

Parameters
• settings (dict) – Dictionary object conforming to structure of settings dictionary

• verbose (bool, optional) – Print full output to terminal. Defaults to False.

PrepGridue(guard_cell_eps=0.001)→ None
Prepare the gridue for writing.

This method calls topology specific implementations of methods that concatenate the Patch object subgrids
into a global grid.

PrepLineTracing()

Initializes the line tracing class for the construction of the grid.

ProcessKeywords(**kwargs)→ None
Process kwargs and set all file paths accordingly.

ProcessPaths()→ None
Update settings by pre-pending path entries to all file entries.

ReconstructPatches(raw_patch_list: list)→ dict
Reconstruct a Patch objects from a saved file.

This method takes in an Ingrid formatted .npy file that contains the information needed to reconstruct a
patch map from a past INGRID session.

Parameters fname (str) – The file path to the patch data file obtained after a call to Ingrid class
method SavePatches

Returns A dict of reconstructed Patch objects.

SetDefaultSettings()→ None
Set all default values that will populate the settings dict.

This instantiates the following entries within the settings file:

• ‘grid_settings’

• ‘integrator_settings’

• ‘target_plates’

• ‘limiter’

• ‘patch_data’

• ‘DEBUG’

Additional entries may be added here as development continues.

3.3. utils 89

ingrid

SetLimiter(fpath: str = '', coordinates: list = [], rshift: float = 0.0, zshift: float = 0.0)→ None
Instantiate the class Line object that represents the tokamak limiter.

This method accepts either coordinates or a valid file path to coordinate data.

If fpath and coordinates are at their default values, then the EFIT data will be searched for it’s default limiter
values.

Parameters
• fpath (str, optional) – A file path to a ‘.txt’ or ‘.npy’ file containing (R, Z) data.

• coordinates (list, optional) – A list with two entries containing R and Z entries
respectively.

• rshift (float, optional) – Apply a translation to the R coordinate of the limiter en-
tries.

• zshift (float, optional) – Apply a translation to the Z coordinate of the limiter en-
tries.

SetTargetPlate(settings: dict, rshift: float = 0.0, zshift: float = 0.0)→ None
Initialize a target plate Line object.

This method can initialize target plates:

• plate_W1

• plate_E1

• plate_W2

• plate_E2

with explicit (R, Z) coordinates.

Parameters
• settings (dict) – Argument dict specifying which plate to define and with what (R,Z).

See notes for more details.

• rshift (float, optional) – Translate the (R, Z) coordinates by a float value.

• zshift (float, optional) – Translate the (R, Z) coordinates by a float value.

Notes

Parameter settings is in the following form: {plate_name: rz_data}

where plate_name is a valid key string (see table below), and rz_data is an iterable structure with two
iterable entries containing R and Z entries (see examples for usage).

Most users should use the Ingrid class method SetGeometry rather than interface directly with the IngridU-
tils method since SetGeometry calls this IngridUtils method after processing the user input.

Valid plate keys are as follows:

Plate Accepted Keys (str)
Plate W1 plate_W1, W1
Plate E1 plate_E1, E1
Plate W2 plate_W2, W2
plate_E2 plate_E2, E2

90 Chapter 3. Module Documentation

ingrid

Example

Defining target plate plate_W1 with coordinates [(1,2), (2, 3), (3, 4)]

>>> MyIG = IngridUtils()
>>> r_entries = [1, 2, 3]
>>> z_entries = [2, 3, 4]
>>> rz_data = (r_entries, z_entries)
>>> MyIG.SetTargetPlate({'plate_W1': rz_data})

WriteGridueDNL(gridue_settings: dict, fname: str = 'gridue')→ bool
Write a gridue file for a double-null configuration.

Parameters
• gridue_settings (dict) – A dictionary containing grid data to be written to the gridue

file.

• fname (str, optional) – The file name/path to save the gridue file to. Defaults to
‘gridue’.

Returns True if file was written with no errors

WriteGridueSNL(gridue_settings: dict, fname: str = 'gridue')→ bool
Write a gridue file for a single-null configuration.

Parameters
• gridue_settings (dict) – A dictionary containing grid data to be written to the gridue

file.

• fname (str, optional) – The file name/path to save the gridue file to. Defaults to
‘gridue’.

Returns True if file was written with no errors

get_config()→ str
Get the configuration obtained during analysis of x-points.

Returns A string identifying the configuration contained within LineTracing attribute Line-
Tracer.

class INGRID.utils.TopologyUtils(Ingrid_obj: object, config: str)
Bases: object

The base class for all INGRID topologies.

Encapsulates key methods generating patch maps, visualizing data, generating grids, and exporting of grids.

These methods are to be interfaced by the child ingrid.Ingrid or can be used by advanced users of the code.

Variables
• parent (Ingrid) – Ingrid object the topology is being managed by.

• settings (dict) – Core settings dict of parent.

• CurrentListPatch (dict) – Lookup dict of Patches that have been refined (populated
during Patch refinement).

• ConnexionMap (dict) – A mapping describing how Patch objects are connected to each
other (see notes).

• CorrectDistortion (dict) – The settings to be used for correcting grid shearing.

3.3. utils 91

ingrid

• config (str) – Configuration of topology.

• PlateData (dict) – Parent target plate data dict.

• PatchTagMap (dict) – A dictionary containing the tag to patch name mappings for this
topology.

• LineTracer (LineTracing) – Parent LineTracing instance.

• PsiUNorm (EfitData) – Parent PsiUNorm instance.

• PsiNorm (EfitData) – Parent PsiNorm instance.

CheckFunction(expression: str, Verbose: bool = False)→ bool
Check if a str is in the correct format for method get_func

Parameters
• expression (str) – Expression to check.

• Verbose (bool, optional) – Print full output to terminal. Default to False

Returns True if expression is valid. False otherwise.

CheckPatches(verbose: bool = False)→ None
Convenience method for calling the Patch class method CheckPatch.

Checks to make sure Patch objects stored in the TopologyUtils patches dictionary are monotonic in psi
along strike geometry (if applicable).

Parameters verbose (bool, optional) – Print full output to terminal. Defaults to False.

GetBoundaryPoints(AdjacentPatchInfo: tuple)→ list
Get the points along a boundary for a particular Patch.

Parameters AdjacentPatchInfo (tuple) – A 2-tuple containing the tag of the Patch to obtain
boundary points from (str value), and a character indicating which boundary to access (‘N’,
‘S’, ‘E’, ‘W’).

Returns A list containing the Points along the specified boundary for a Patch.

GetDistortionCorrectionSettings()→ dict
Get settings associated with the CorrectDistortion capability.

Returns A dictionary containing CorrectDistortion settings.

GetFunctions(Patch: INGRID.geometry.Patch, Verbose: bool = False)→ tuple
Get the poloidal and radial transformations for a Patch.

Poloidal and radial transformations affect more than a single Patch in the index space. This method ensures
that the same transformations are applied to dependent Patches (e.g. radial transformation T is applied to
all Patch objects in the same radial level).

Parameters
• Patch (Patch) – The Patch to get the functions for.

• Verbose (bool, optional) – Print all output to terminal. Default to False.

Returns 2-tuple containing functions for radial and poloidal direction respectively.

GetNpoints(Patch: INGRID.geometry.Patch)→ tuple
Get the number of poloidal and radial grid cells to be generated for a Patch.

Because of index space dependence and formatting, this method ensures adjacent patches in the index space
are matching in dimensions.

92 Chapter 3. Module Documentation

ingrid

Parameters Patch (Patch) – Patch object to get the np and nr values for.

Returns A 2-tuple containing the number of radial and poloidal cells to generate, respectively.

OrderPatches()

RefreshSettings()

SetPatchBoundaryPoints(Patch: INGRID.geometry.Patch, verbose: bool = False)→ None
Set the Patch BoundaryPoints dict based off TopologyUtils ConnexionMap.

Parameters
• Patch (Patch) – The Patch to set the boundary points for.

• verbose (bool) – Print full output to terminal.

Notes

The ConnexionMap represents the layout of adjacent patches and will lookup what is adjacent to the Patch
parameter being operated on.

SetupPatchMatrix()→ list
Instantiate the list representation of the Patch layout in index space.

Method concat_grid uses this structure when combining refined Patches into a global grid.

Returns The ‘PatchMatrix’ list

concat_grid(guard_cell_eps: float = 0.001)→ None
Concatenate a refined Patch map into a global grid.

This method take grid data and represents it into Fortran formatted arrays that will be written to gridue.

Adding of guard cells is done in this method as well.

Parameters guard_cell_eps (float, optional) – Determines the size of guard cell
padding.

construct_grid(np_cells: int = 1, nr_cells: int = 1, Verbose: bool = False, ShowVertices: bool = False,
RestartScratch: bool = False, ListPatches: str = 'all')→ None

Construct a grid by refining a Patch map.

This method gathers transformation and dimension information to apply to each Patch. In addition, this
applies any CorrectDistortion settings the user may want to apply.

Assumes a Patch map has been generated or that Patches have been loaded (equivalent).

Parameters
• np_cells (int, optional) – Number of poloidal cells to create in the local Patch grid.

Defaults to 1.

• nr_cells (int, optional) – Number of radial cells to create in the local Patch grid.
Defaults to 1.

• Verbose (bool, optional) – Print all output to terminal. Defaults to False

• ShowVertices (bool, optional) – Emphasize spline vertices on grid figure with bold
markers. Defaults to False.

• RestartScratch (bool, optional) – Flag for repeating the Patch refinement process
for an already refined Patch. Defaults to False.

3.3. utils 93

ingrid

• ListPatches (str, optional) – Specify which Patches to generate a grid for (see
notes). Defaults to ‘all’.

Examples

Parameter ListPatches can be used to specify which Patches to refine into a grid. The default value of
all instructs TopologyUtils to refine the entire Patch map. To specify Patches, the user is to provide a list
containing names of Patches to refine.

Refining only the outer-most psi boundary (SOL) for a lower single-null configuration:

>>> patch_names = ['A2', 'B2', 'C2', 'D2', 'E2', 'F2']
>>> MyTopologyUtils.construct_grid(np_cells=3, nr_cells=3, ListPatches=patch_
→˓names)

Refining only the inboard and outboard psi boundary for an unbalanced double-null configuration:

>>> patch_names = ['A3', 'B3', 'C3', 'D3', 'E3', 'F3', 'G3', 'H3']
>>> MyTopologyUtils.construct_grid(np_cells=3, nr_cells=3, ListPatches=patch_
→˓names)

Notes

The Patch refinement process is often order-dependent. This is to ensure alignment of grid with minimal
editing.

Because of this, parameters such as ListPatches is suggested to be used by a user or developer who is
sure of what they are doing.

get_config()→ str
Return the configuration string stored in the TopologyUtils class

Returns A string indicating the topology

get_func(func: str)→ function
Create a function from a string input.

Will be used to generate a poloidal or radial transformation function.

Parameters func (str) – An expression to generate a function from.

Returns A function generated from the str input.

Examples

When calling method get_func the user must provide a string with the following general format:

𝑥, 𝑓(𝑥)

That is, the dependent variable and expression to evaluate are separated with a comma character.

The Sympy library supports most expressions that can be generated with Python natively. See the Sympy
documentation for advanced features.

Defining a function representing f(x) = x ^ 2:

94 Chapter 3. Module Documentation

ingrid

>>> func = 'x, x ** 2'
>>> f = MyTopologyUtils.get_func(func)
>>> f(np.array([0, 1, 2, 3]))
array([0, 1, 4, 9])

Defining a function representing f(x) = exp(x)

>>> func = 'x, exp(x)'
>>> f = MyTopologyUtils.get_func(func)
>>> f(np.array([0, 1, 2, 3]))
array([1. , 2.71828183, 7.3890561 , 20.08553692])

grid_diagram(fig: Optional[object] = None, ax: Optional[object] = None)→ None
Generates the grid diagram for a given configuration.

Parameters
• fig (object, optional) – Matplotlib figure to show the grid diagram on.

• ax (object, optional) – Matplotlib axes to plot the grid diagram on.

patch_diagram(fig: Optional[object] = None, ax: Optional[object] = None)→ None
Generate the patch diagram for a given configuration.

Parameters
• fig (object, optional) – Matplotlib figure to show the Patch map on.

• ax (object, optional) – Matplotlib axes to plot the Patch map on.

3.4 geometry

The geometry module contains core classes that support the INGRID geometrical object hierarchy. This module also
contains various helper functions that work in tandem with the LineTracing class to generate Patch maps and grids.

class INGRID.geometry.Cell(lines)
Bases: object

Define a Cell that resides within a grid.

Parameters lines (array-like) – A collection of 4 Line objects that define the borders of a Cell.

Variables
• lines (array-like) – The 4 Lines that create the border of the Cell.

• vertices (dict) – A lookup for accessing NW, NE, SE, SW, and CENTER spatial infor-
mation.

• p (list) – A list of Point objects along the North and South border.

3.4. geometry 95

ingrid

Notes

When accessing vertices, we have the following convention:

Location Accepted Key (str)
NW Corner NW
NE Corner NE
SW Corner SW
SE Corner SE
Center CENTER

as_np()→ numpy.ndarray
Get the ndarray representation of a Cell object

Returns An ndarray representing a cell

plot_border(color: str = 'red', ax: Optional[matplotlib.axes.Axes] = None)→ None
Plot the Cell.

Parameters
• color (str, optional) – Color of the Cell border. Defaults to ‘red’

• ax (matplotlib.axes.Axes, optional) – The Axes instance to plot the Cell to.

plot_center(color='black', ax: Optional[matplotlib.axes.Axes] = None)→ None
Plot the center of a Cell.

Parameters
• color (str, optional) – The color of the marker. Defaults to ‘black’

• ax (matplotlib.axes.Axes, optional) – The Axes instance to plot the Cell center to.

class INGRID.geometry.Line(points: list)
Bases: object

Define an arbitrary line/curve.

This is ordered collection of Point objects can later be used to define a Patch object.

Parameters points (list) – The Point objects that define the Line.

Variables
• p (list) – The list of Point objects that define this Line.

• xval (list) – A list consisting the x-coordinates for each Point.

• yval (list) – A list consisting the y-coordinates for each Point.

GetAngle(Line)
Return the angle between two lines in degree (between 0 and 180 degrees) :param Line: DESCRIPTION.
:type Line: TYPE

Returns None.

Norm()

Return norm of the lines :returns: None.

RemoveDuplicatePoints()

Remove any duplicate points from list of points

96 Chapter 3. Module Documentation

ingrid

as_np()→ numpy.ndarray
Get the calling Line object represented as an ndarray.

Returns An ndarray representation of the Line.

Notes

Format of ndarray is of shape (2, n), with n being the number of Point objects in the Line.

The first entry of the ndarray is the xval attribute. The second entry of the ndarray is the yval attribute.

This method is used to encode the patch_data file.

copy()→ INGRID.geometry.Line
Create a copy of this Line object.

Returns A new Line instance.

fluff(num: int = 1000, verbose: bool = False)→ tuple
Obtain linspaced copies of the xval and yval attributes.

Parameters
• num (int, optional) – Number of entries to include between each segment within the

Line. Defaults to 100.

• verbose (bool, optional) – Print full output to terminal. Defaults to False

Returns A 2-tuple consisting of ‘fluffed’ xval and yval.

fluff_copy(num: int = 5)→ INGRID.geometry.Line
Create a ‘fluffed’ copy of this Line.

Calls the method fluff internally.

Parameters num (int, optional) – Number of entries to include between each segment
within the Line copy.

Returns A ‘fluffed’ copy of the calling Line object.

plot(color: str = '#1f77b4', label: str = '', ax: Optional[matplotlib.axes.Axes] = None, linewidth: float =
1.0)→ matplotlib.axes.Axes

Plot the Line.

Parameters
• color (str, optional) – Defaults to a light blue.

• label (str, optional) – A label to plot with. Defaults to None.

• ax (matplotlib.axes.Axes, optional) – The Axes instance to plot the Line to.

• linewidth (float, optional) – The linewidth to plot with.

Returns The matplotlib.axes.Axes instance plotted on.

points()→ list
Get a list of all coordinates within the Line object.

Returns A list of tuples representing (x, y) coordinates of the Line.

print_points()→ None
Prints each point in the line to the terminal.

3.4. geometry 97

ingrid

reverse_copy()→ INGRID.geometry.Line
Create a copy of this Line in reversed order.

Returns A new Line instance

split(split_point, add_split_point=False)→ tuple
Split a line object into two line objects at a particular point.

Returns two Line objects Segment A and Segment B (corresponding to both subsets of Points) The
split_point is always included in Segment B.

Parameters
• split_point (Point) – Point that determines splitting location.

• add_split_point (bool) – Append the split point to Segment A while still including the
split point in Segment B.

Returns A tuple with Line objects representing Segment A and Segment B.

class INGRID.geometry.Patch(lines: array - like, patch_name: str = '', PatchTagMap: dict = None,
plate_patch: bool = False, plate_location: str = None, color: str = 'blue')

Bases: object

Define a Patch representing a portion of the tokamak domain.

Each Patch can be refined into a subgrid that can then create a global grid.

Parameters
• lines (array-like) – The four Line objects defining the boundary of this Patch (N, E, S,

W).

• patch_name –

AdjustBorder(face, patch)

CheckPatch(grid, verbose=False)

RemoveDuplicatePoints()

adjust_corner(point, corner)

as_np()

cell_grid_as_np()

fill(color='lightsalmon', ax=None, alpha=1.0)
Shades in the patch with a given color

Parameters color (str, optional) – Defaults to a light salmon.

get_settings()

get_tag()

make_subgrid(grid, np_cells=2, nr_cells=2, _poloidal_f=<function Patch.<lambda>>,
_radial_f=<function Patch.<lambda>>, verbose=False, visual=False, ShowVertices=False)

Generate a refined grid within a patch. This ‘refined-grid’ within a Patch is a collection of num x num Cell
objects

Parameters
• grid (Ingrid) – To be used for obtaining Efit data and all other class information.

98 Chapter 3. Module Documentation

ingrid

• num (int, optional) – Number to be used to generate num x num cells within our Patch.

plot_border(color='red', ax=None)
Draw solid borders around the patch.

Parameters color (str, optional) – Defaults to red.

plot_subgrid(fig=None, ax=None, color='blue')

class INGRID.geometry.Point(*pts)
Bases: object

Define a Point.

Can be used to later define Line objects.

Parameters pts (array-like) – Accepts either two values x, y as floats, or a single tuple/list value
(x, y).

Variables
• x (float) – x coordinate of the point

• y (float) – y coordinate of the point

• coor (tuple) – x and y coordinates together as a tuple

as_np()→ numpy.ndarray
Return the Point object as a numpy ndarray.

Returns An ndarray representation of the Point object.

plot(ax: Optional[matplotlib.axes.Axes] = None)→ None
Plot the Point.

Parameters ax (matplotlib.axes.Axes, optional) – The Axes instance to plot to. Default
is None and calls function matplotlib.pyplot.gca.

psi(grid: EfitData, tag: str = 'v')→ float
Get the psi value of this Point from an EfitData instance.

Parameters
• grid (EfitData) – The grid upon which the value of psi is to be calculated on.

• tag (str, optional) – Char to specify the type of psi derivative. Defaults ‘v’ (no deriva-
tive).

Returns The psi value at the Point.

class INGRID.geometry.Vector(xy: array - like, origin: array - like)
Bases: object

Defines a vector from a nontrivial origin.

Parameters
• xy (array-like) – Location of the vector. It if of the form (x, y).

• origin (array-like) – Location of the origin. This is to adjust for not being at the origin
of the axes. Of the form (x, y).

Variables
• x (float) – x-coordinate

3.4. geometry 99

ingrid

• y (float) – y-coordinate

• xorigin (float) – x-coordinate of vector origin

• yorigin (float) – y-coordinate of vector origin

• xnorm (float) – x relative to origin

• ynorm (float) – y relative to origin

• quadrant (int) – Quadrant vector resides in

arr()→ numpy.ndarray
Return the vector object as an array.

Returns The vector as an numpy ndarray.

mag()→ float
Return the L2 norm of the vector.

Returns Vector norm.

INGRID.geometry.CorrectDistortion(u, Pt, Pt1, Pt2, spl, ThetaMin, ThetaMax, umin, umax, Resolution,
visual, Tag, MinTol=1.02, MaxTol=0.98, Verbose=False)

INGRID.geometry.UnfoldLabel(Dic: dict, Name: str)→ str
Unfold Patch label (e.g. “C1” -> “Inner Core Top”)

Parameters
• Dic (dict) – Dictionnary containing description of acronym characters

• Name (str) – patch label

Returns str – Unfolded patch label.

INGRID.geometry.angle_between(u, v, origin, relative=False)
Compute angle in radians between vectors u and v

INGRID.geometry.calc_mid_point(v1, v2)
Calculates the bisection of two vectors of equal length, and returns the point on the circle at that angle.

Parameters
• v1 (geometry.Vector) – v1 must be furthest right in a counter clockwise direction.

• v2 (geometry.Vector) – Vector on the left.

Returns tuple – The point at the bisection of two vectors.

INGRID.geometry.find_split_index(split_point: INGRID.geometry.Point, line: INGRID.geometry.Line)→
tuple

Determine which index a Point would best split a Line.

This method is useful for modifying Line objects during line tracing (searching for intersection of two line objects
and trimming excess)

Parameters
• split_point (Point) – The candidate Point to find the split index with respect to.

• line (Line) – The Line to search for a split index within.

Returns A 2-tuple containing the split-index and a boolean flag indicating – whether the split_point
was contained within the Line

100 Chapter 3. Module Documentation

ingrid

Notes

Should no appropriate split index be found, the method will return a None value in place of an integer index.

The second entry of the tuple return value would be a value of True if the split_point parameter was used to
define the line parameter.

INGRID.geometry.intersect(line1, line2, verbose=False)
Finds the intersection of two line segments

Parameters
• line1 (array-like) –

• line2 (array-like) – Both lines of the form A = ((x, y), (x, y)).

Returns tuple – Coordinates of the intersection.

INGRID.geometry.is_between(end_u: array - like, split_v: array - like)→ bool

INGRID.geometry.limiter_split(start, end, limiter)

INGRID.geometry.non_decreasing(L: array - like)→ bool
Determine if non-decreasing.

Parameters L (array-like) – Values to test.

Returns True if non-decreasing and False otherwise

INGRID.geometry.non_increasing(L: array - like)→ bool
Determine if non-increasing.

Parameters L (array-like) – Values to test.

Returns True if non-increasing and False otherwise

INGRID.geometry.orientation_between(u, v, origin)
Compute angle in radians between vectors u and v

INGRID.geometry.reorder_limiter(new_start, limiter)

INGRID.geometry.rotate(vec, theta, origin)

INGRID.geometry.rotmatrix(theta: float)→ numpy.ndarray
Construct a rotation matrix

Parameters theta (float) – Angle in radians.

Returns An ndarray with shape (2, 2) representing a 2D rotation matrix.

INGRID.geometry.segment_intersect(line1, line2, verbose=False)
Finds the intersection of two FINITE line segments. :param line1: :type line1: array-like :param line2: Both
lines of the form line1 = (P1, P2), line2 = (P3, P4) :type line2: array-like

Returns bool, tuple – True/False of whether the segments intersect Coordinates of the intersection

INGRID.geometry.strictly_decreasing(L: array - like)→ bool
Determine if strictly decreasing.

Parameters L (array-like) – Values to test.

Returns True if strictly decreasing and False otherwise

3.4. geometry 101

ingrid

INGRID.geometry.strictly_increasing(L: array - like)→ bool
Determine if strictly increasing.

Parameters L (array-like) – Values to test.

Returns True if strictly increasing and False otherwise

INGRID.geometry.test2points(p1, p2, line)
Check if two points are on opposite sides of a given line.

Parameters
• p1 (tuple) – First point, (x, y)

• p2 (tuple) – Second point, (x, y)

• line (array-like) – The line is comprised of two points ((x, y), (x, y)).

Returns tuple – Returns two numbers, if the signs are different the points are on opposite sides of
the line.

INGRID.geometry.trim_geometry(geoline, start, end)

INGRID.geometry.unit_vector(v)
Returns unit vector

INGRID.geometry.which_increasing(L: array - like)→ list
Determine increasing values.

Parameters L (array-like) – Values to test.

Returns A list of 2-tuples containing index and increasing element

INGRID.geometry.which_non_increasing(L: array - like)→ list
Determine non-increasing values.

Parameters L (array-like) – Values to test.

Returns A list of 2-tuples containing index and non-increasing element.

3.5 line_tracing

exception INGRID.line_tracing.RegionEntered(message, region)
Bases: Exception

class INGRID.line_tracing.LineTracing(grid, settings, eps=1e-06, tol=5e-05, first_step=1e-05,
numPoints=25, dt=0.01, option='xpt_circ', direction='cw')

Bases: object

This class traces the polodal and radial lines of a given psi function based of the points where the user clicks.

Parameters
• grid (EfitData.EfitData) – The grid object upon which the lines will be drawn.

• settings (dict) – YAML file containing all INGRID parameters.

• eps (float, optional) – Short for epsilon. Specifies the size of the circle drawn around
the zero point.

• tol (float, optional) – Short for tolerance. Specifies how close to the final point the
line must get before converging. Also defines a circle.

102 Chapter 3. Module Documentation

ingrid

• numPoints (int) – Number of points in the circle of radius eps.

• dt (float, optional) – Specify the size of each line segment that is traced by
scipy.integrate.solve_ivp.

• option (str, optional) – ‘theta’ draws the poloidal line where the user clicks. ‘rho’
draws the radial line where the user clicked. ‘xpt_circ’: uses the root finder to find the root
closest to where the user clicked. Then finds the points around that circle a distance epsilon
away.

• direction (str, optional) – ‘cw’ or ‘ccw’. Specifies clockwise or counterclockwise
line tracing.

DNL_find_NSEW(xpt1, xpt2, magx, visual=False)
Find NSEW based off primary x-point and magnetic axis,

Parameters
• xpt (array-like) – R, Z coordinate of the primary x-point.

• mag (array-like) – R, Z coordinate of the magnetic axis.

Notes

LineTracer_psi will contain NSEW information post call.

PsiCostFunc(xy)

SNL_find_NSEW(xpt, magx, visual=False)
Find NSEW based off primary x-point and magnetic axis,

Parameters
• xpt (array-like) – R, Z coordinate of the primary x-point.

• mag (array-like) – R, Z coordinate of the magnetic axis.

Notes

self.LineTracer_psi will contain NSEW information post call.

analyze_saddle(xpt, xpt_ID)

Finds theta values to be tested for N and S directions

disconnect()

Turns off the click functionality

draw_line(rz_start, rz_end=None, color='purple', option=None, direction=None, show_plot=False,
text=False, dynamic_step=None, debug=False, Verbose=False)

Uses scipy.integrate.solve_ivp to trace poloidal or radial lines. Uses the LSODA method to solve the dif-
ferential equations. Three options for termination criteria, specified by rz_end.

Parameters
• rz_start (array-like or geometry.Point) – Starting location for line tracing.

• rz_end (dict, optional) – Defaults to be rz_start. This is how we specify the termi-
nation critera. i.e. {‘point’: Point}, {‘line’: Line}, {‘psi’: Psi} Points can be a geome-
try.Point, or array-like i.e. (x, y) Lines can be a geometry.Line, or array-like i.e. ((x, y), (x,
y)) Psi must be a scalar, i.e. 1.1, and specifies the level of psi to stop on.

3.5. line_tracing 103

ingrid

• color (str, optional) – Specifies the color of the produced grid lines.

• option (str, optional) – Change which differential equation is used in the line tracing
proccess. ‘theta’, ‘rho’

• direction (str) – determines if the function plots clockwise (cw) or counterclockwise
(ccw). default is None.

• show_plot (bool, optional) – Show the user real-time tracing and the line tracer
works.

• text (bool, optional) – Prints convergence method, number of iterations, and time
taken to the terminal window.

Returns line (geometry.Line) – Curved line consisting of the start and end points of each segment
calculated by solve_ivp. Does not store the intermediate points.

flip_NSEW_lookup(xpt_ID)

map_xpt(xpt, magx, xpt_ID='xpt1', visual=False, verbose=False)

rotate_NSEW_lookup(xpt_ID, turns=2)

3.6 interpol

Module containing EfitData class for handling all interpolation related computations.

class INGRID.interpol.EfitData(rmin=0.0, rmax=1.0, nr=10, zmin=0.0, zmax=2.0, nz=20, rcenter=1.6955,
bcenter=- 2.1094041, rlimiter=None, zlimiter=None, rmagx=0.0,
zmagx=0.0, name='unnamed', parent=None)

Bases: object

Structure to store the rectangular grid of psi data. It uses cylindrical coordinates, where R and Z are similar to
the cartesian x and y. The phi components goes away due to the symmetry of a tokamak.

Parameters
• rmin (float, optional) – left boundary of the grid

• rmax (float, optional) – right boundary

• nr (int, optional) – number of grid points in the R direction

• zmin (float, optional) – bottom boundary for the grid

• zmax (float, optional) – top boundary

• nz (int, optional) – number of grid points in the Z direction

• name (str, optional) – Specify the title of the figure the data will be plotted on.

Gradient(xy: tuple)→ numpy.ndarray
Combines the first partial derivatives to solve the system for maximum, minimum, and saddle locations.

Parameters xy (array-like) – Contains x and y. Ex: xy = (x0, y0).

Returns F (array) – Vector function to be used in find root.

Hessian(xy: tuple)→ numpy.ndarray
Compute the Hessian at a point.

Parameters xy (array-like) – Contains x and y. Ex: xy = (x0, y0).

104 Chapter 3. Module Documentation

ingrid

Returns H (array) – Numpy array of shape (2, 2) representing the Hessian at xy.

PlotLevel(level: float = 1.0, color: str = 'red', label: str = '', linestyles: str = 'solid', refined: bool = True,
refine_factor: int = 10)→ None

Plot a psi level and provide it a label.

This function is useful for management of psi boundaries such as ‘psi_pf’, ‘psi_core’, etc and ensuring the
contour will be properly replotted (no duplicate of same label).

Parameters
• level (float, optional) – Psi level to plot. Default to 1.0 (separatrix of normalized

psi)

• color (str, optional) – Color to pass to matplotlib contour function

• label (str, optional) – Label to associate with the psi level

• linestyles (str, optional) – Line style to pass to matplotlib contour function

• refined (bool, optional) – Plot level with hi-resolution cubic spline representation

• refine_factor (int, optional) – Refinement factor for to be passed to SciPy zoom
method

PsiFunction(xy)

clear_plot()

get_psi(r0, z0, tag='v')
find grid cell encompassing (r0,z0) note: grid is the crude grid. Uses Bicubic Interpolation to calculate the
exact value at the point. Useful for finding information inbetween grid points.

Parameters
• r0 (float) – R coordinate of the point of interest

• z0 (float) – Z coordinate of same point.

• tag (str, optional) – tag is the type of derivative we want: v, vr, vz, vrz if nothing is
provided, it assumes no derivative (v).

Returns float – Value of psi or its derviative at the coordinate specified.

init_bivariate_spline(r: numpy.ndarray, z: numpy.ndarray, v: numpy.ndarray)→ None
Initialize scipy.interpolate.RectBivariateSpline object for Bicubic interpolation.

Sets class member v to crude EFIT grid.

Parameters
• r (array-like) – 1-D array of r coordinates in strictly ascending order.

• z (array-like) – 1-D array of z coordinates in strictly ascending order.

• v (array-like) – 2-D array of EFIT data with shape (r.shape, z.shape)

plot_data(nlevs: int = 30, interactive: bool = True, fig: Optional[object] = None, ax: Optional[object] =
None, view_mode: str = 'filled', refined: bool = True, refine_factor: int = 10)

Plot the EFIT data.

Visualizes eqdsk file with either contour lines or filled contours.

Parameters
• nlev (int, optional) – number of levels we want to be plotted

3.6. interpol 105

ingrid

• interactive (bool, optional) – Set matplotlib interactive mode on or off

• fig (object, optional) – Matplotlib figure handle

• ax (object, optional) – Matplotlib axes handle

• view_mode (str, optional) – Represent EFIT data with standard contour lines or filled
contour lines. String value of ‘filled’ enables filled contours, whereas ‘lines’ omits filling
of contours.

• refined (bool, optional) – Plot level with hi-resolution cubic spline representation

• refine_factor (int, optional) – Refinement factor for to be passed to SciPy zoom
method

plot_levels(level=1.0, color='red')
This function is useful if you need to quickly see where a particular line of constant psi is. It in’t able to
store points of intersection, and cannot be generalized. If you need just a segment of psi, use the draw_lines
method in the line tracing class.

Parameters
• level (float, optional) – Value of psi you wish to see

• color (str, optional) – color of the line.

106 Chapter 3. Module Documentation

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

107

ingrid

108 Chapter 4. Indices and tables

PYTHON MODULE INDEX

i
INGRID.geometry, 95
INGRID.ingrid, 71
INGRID.interpol, 104
INGRID.line_tracing, 102
INGRID.topologies.sf105, 79
INGRID.topologies.sf135, 80
INGRID.topologies.sf15, 81
INGRID.topologies.sf165, 82
INGRID.topologies.sf45, 82
INGRID.topologies.sf75, 83
INGRID.topologies.snl, 84
INGRID.topologies.udn, 85
INGRID.utils, 85

109

ingrid

110 Python Module Index

INDEX

A
adjust_corner() (INGRID.geometry.Patch method),

98
AdjustBorder() (INGRID.geometry.Patch method), 98
AdjustGrid() (INGRID.topologies.sf105.SF105

method), 79
AdjustGrid() (INGRID.topologies.sf135.SF135

method), 80
AdjustGrid() (INGRID.topologies.sf15.SF15 method),

81
AdjustGrid() (INGRID.topologies.sf165.SF165

method), 82
AdjustGrid() (INGRID.topologies.sf45.SF45 method),

83
AdjustGrid() (INGRID.topologies.sf75.SF75 method),

83
AdjustGrid() (INGRID.topologies.snl.SNL method), 84
AdjustGrid() (INGRID.topologies.udn.UDN method),

85
AdjustPatch() (INGRID.topologies.sf105.SF105

method), 80
AdjustPatch() (INGRID.topologies.sf135.SF135

method), 80
AdjustPatch() (INGRID.topologies.sf15.SF15

method), 81
AdjustPatch() (INGRID.topologies.sf165.SF165

method), 82
AdjustPatch() (INGRID.topologies.sf45.SF45

method), 83
AdjustPatch() (INGRID.topologies.sf75.SF75

method), 83
AdjustPatch() (INGRID.topologies.snl.SNL method),

84
AdjustPatch() (INGRID.topologies.udn.UDN method),

85
analyze_saddle() (INGRID.line_tracing.LineTracing

method), 103
AnalyzeTopology() (INGRID.ingrid.Ingrid method),

71
angle_between() (in module INGRID.geometry), 100
arr() (INGRID.geometry.Vector method), 100
as_np() (INGRID.geometry.Cell method), 96

as_np() (INGRID.geometry.Line method), 96
as_np() (INGRID.geometry.Patch method), 98
as_np() (INGRID.geometry.Point method), 99
AutoRefineMagAxis() (INGRID.ingrid.Ingrid method),

72
AutoRefineXPoint() (INGRID.ingrid.Ingrid method),

72
AutoRefineXPoint2() (INGRID.ingrid.Ingrid method),

72

C
calc_mid_point() (in module INGRID.geometry), 100
CalcPsiNorm() (INGRID.ingrid.Ingrid method), 72
Cell (class in INGRID.geometry), 95
cell_grid_as_np() (INGRID.geometry.Patch method),

98
CheckFunction() (INGRID.utils.TopologyUtils

method), 92
CheckPatch() (INGRID.geometry.Patch method), 98
CheckPatches() (INGRID.utils.IngridUtils method), 86
CheckPatches() (INGRID.utils.TopologyUtils method),

92
ClassifyTopology() (INGRID.utils.IngridUtils

method), 87
clear_plot() (INGRID.interpol.EfitData method), 105
ClearLegend() (INGRID.ingrid.Ingrid method), 72
concat_grid() (INGRID.utils.TopologyUtils method),

93
construct_grid() (INGRID.utils.TopologyUtils

method), 93
construct_patches() (IN-

GRID.topologies.sf105.SF105 method),
80

construct_patches() (IN-
GRID.topologies.sf135.SF135 method),
80

construct_patches() (INGRID.topologies.sf15.SF15
method), 81

construct_patches() (IN-
GRID.topologies.sf165.SF165 method),
82

construct_patches() (INGRID.topologies.sf45.SF45

111

ingrid

method), 83
construct_patches() (INGRID.topologies.sf75.SF75

method), 84
construct_patches() (INGRID.topologies.snl.SNL

method), 84
construct_patches() (INGRID.topologies.udn.UDN

method), 85
ConstructGrid() (INGRID.ingrid.Ingrid method), 72
ConstructPatches() (INGRID.ingrid.Ingrid method),

72
copy() (INGRID.geometry.Line method), 97
CorrectDistortion() (in module INGRID.geometry),

100
CreatePatches() (INGRID.ingrid.Ingrid method), 72
CreateSubgrid() (INGRID.ingrid.Ingrid method), 72

D
disconnect() (INGRID.line_tracing.LineTracing

method), 103
DNL_find_NSEW() (INGRID.line_tracing.LineTracing

method), 103
draw_line() (INGRID.line_tracing.LineTracing

method), 103

E
EfitData (class in INGRID.interpol), 104
ExportGridue() (INGRID.ingrid.Ingrid method), 72

F
fill() (INGRID.geometry.Patch method), 98
find_split_index() (in module INGRID.geometry),

100
FindMagAxis() (INGRID.utils.IngridUtils method), 87
FindXPoint() (INGRID.utils.IngridUtils method), 87
FindXPoint2() (INGRID.utils.IngridUtils method), 87
flip_NSEW_lookup() (IN-

GRID.line_tracing.LineTracing method),
104

fluff() (INGRID.geometry.Line method), 97
fluff_copy() (INGRID.geometry.Line method), 97

G
get_config() (INGRID.utils.IngridUtils method), 91
get_config() (INGRID.utils.TopologyUtils method), 94
get_func() (INGRID.utils.TopologyUtils method), 94
get_psi() (INGRID.interpol.EfitData method), 105
get_settings() (INGRID.geometry.Patch method), 98
get_tag() (INGRID.geometry.Patch method), 98
GetAngle() (INGRID.geometry.Line method), 96
GetBoundaryPoints() (INGRID.utils.TopologyUtils

method), 92
GetDistortionCorrectionSettings() (IN-

GRID.utils.TopologyUtils method), 92

GetFunctions() (INGRID.utils.TopologyUtils method),
92

GetMagxData() (INGRID.utils.IngridUtils method), 87
GetNpoints() (INGRID.utils.TopologyUtils method), 92
GetPatchTagMap() (INGRID.utils.IngridUtils method),

87
GetXptData() (INGRID.utils.IngridUtils method), 87
Gradient() (INGRID.interpol.EfitData method), 104
grid_diagram() (INGRID.utils.TopologyUtils method),

95
GroupPatches() (INGRID.topologies.sf105.SF105

method), 80
GroupPatches() (INGRID.topologies.sf135.SF135

method), 80
GroupPatches() (INGRID.topologies.sf15.SF15

method), 81
GroupPatches() (INGRID.topologies.sf165.SF165

method), 82
GroupPatches() (INGRID.topologies.sf45.SF45

method), 83
GroupPatches() (INGRID.topologies.sf75.SF75

method), 83
GroupPatches() (INGRID.topologies.snl.SNL method),

84
GroupPatches() (INGRID.topologies.udn.UDN

method), 85

H
Hessian() (INGRID.interpol.EfitData method), 104

I
ImportGridue() (INGRID.ingrid.Ingrid static method),

73
Ingrid (class in INGRID.ingrid), 71
INGRID.geometry

module, 95
INGRID.ingrid

module, 71
INGRID.interpol

module, 104
INGRID.line_tracing

module, 102
INGRID.topologies.sf105

module, 79
INGRID.topologies.sf135

module, 80
INGRID.topologies.sf15

module, 81
INGRID.topologies.sf165

module, 82
INGRID.topologies.sf45

module, 82
INGRID.topologies.sf75

module, 83

112 Index

ingrid

INGRID.topologies.snl
module, 84

INGRID.topologies.udn
module, 85

INGRID.utils
module, 85

IngridUtils (class in INGRID.utils), 85
init_bivariate_spline() (IN-

GRID.interpol.EfitData method), 105
intersect() (in module INGRID.geometry), 101
is_between() (in module INGRID.geometry), 101

L
limiter_split() (in module INGRID.geometry), 101
Line (class in INGRID.geometry), 96
LineTracing (class in INGRID.line_tracing), 102
LoadEFIT() (INGRID.ingrid.Ingrid method), 73
LoadGeometryData() (INGRID.ingrid.Ingrid method),

73
LoadPatches() (INGRID.ingrid.Ingrid method), 73

M
mag() (INGRID.geometry.Vector method), 100
make_subgrid() (INGRID.geometry.Patch method), 98
map_xpt() (INGRID.line_tracing.LineTracing method),

104
module

INGRID.geometry, 95
INGRID.ingrid, 71
INGRID.interpol, 104
INGRID.line_tracing, 102
INGRID.topologies.sf105, 79
INGRID.topologies.sf135, 80
INGRID.topologies.sf15, 81
INGRID.topologies.sf165, 82
INGRID.topologies.sf45, 82
INGRID.topologies.sf75, 83
INGRID.topologies.snl, 84
INGRID.topologies.udn, 85
INGRID.utils, 85

N
non_decreasing() (in module INGRID.geometry), 101
non_increasing() (in module INGRID.geometry), 101
Norm() (INGRID.geometry.Line method), 96

O
OMFIT_read_psi() (INGRID.utils.IngridUtils method),

87
OrderLimiter() (INGRID.utils.IngridUtils method), 87
OrderPatches() (INGRID.topologies.sf105.SF105

method), 80
OrderPatches() (INGRID.topologies.sf135.SF135

method), 80

OrderPatches() (INGRID.topologies.sf15.SF15
method), 81

OrderPatches() (INGRID.topologies.sf165.SF165
method), 82

OrderPatches() (INGRID.topologies.sf45.SF45
method), 83

OrderPatches() (INGRID.topologies.sf75.SF75
method), 83

OrderPatches() (INGRID.topologies.snl.SNL method),
84

OrderPatches() (INGRID.topologies.udn.UDN
method), 85

OrderPatches() (INGRID.utils.TopologyUtils method),
93

OrderTargetPlate() (INGRID.utils.IngridUtils
method), 88

OrderTargetPlates() (INGRID.utils.IngridUtils
method), 88

orientation_between() (in module IN-
GRID.geometry), 101

P
ParseTxtCoordinates() (INGRID.utils.IngridUtils

method), 88
Patch (class in INGRID.geometry), 98
patch_diagram() (INGRID.utils.TopologyUtils

method), 95
plot() (INGRID.geometry.Line method), 97
plot() (INGRID.geometry.Point method), 99
plot_border() (INGRID.geometry.Cell method), 96
plot_border() (INGRID.geometry.Patch method), 99
plot_center() (INGRID.geometry.Cell method), 96
plot_data() (INGRID.interpol.EfitData method), 105
plot_levels() (INGRID.interpol.EfitData method),

106
plot_subgrid() (INGRID.geometry.Patch method), 99
PlotEastWestXpt1Ref() (INGRID.ingrid.Ingrid

method), 73
PlotEastWestXpt2Ref() (INGRID.ingrid.Ingrid

method), 73
PlotGrid() (INGRID.ingrid.Ingrid method), 73
PlotGridue() (INGRID.ingrid.Ingrid static method), 74
PlotLevel() (INGRID.interpol.EfitData method), 105
PlotLimiter() (INGRID.ingrid.Ingrid method), 74
PlotMidplane() (INGRID.ingrid.Ingrid method), 74
PlotPatches() (INGRID.ingrid.Ingrid method), 74
PlotPsiLevel() (INGRID.ingrid.Ingrid method), 74
PlotPsiNorm() (INGRID.ingrid.Ingrid method), 74
PlotPsiNormBounds() (INGRID.ingrid.Ingrid method),

74
PlotPsiNormMagReference() (INGRID.ingrid.Ingrid

method), 74
PlotPsiUNorm() (INGRID.ingrid.Ingrid method), 74

Index 113

ingrid

PlotStrikeGeometry() (INGRID.ingrid.Ingrid
method), 74

PlotSubgrid() (INGRID.ingrid.Ingrid method), 75
PlotTargetPlate() (INGRID.ingrid.Ingrid method),

75
PlotTargetPlates() (INGRID.ingrid.Ingrid method),

75
PlotTopologyAnalysis() (INGRID.ingrid.Ingrid

method), 75
Point (class in INGRID.geometry), 99
points() (INGRID.geometry.Line method), 97
PopulateSettings() (INGRID.utils.IngridUtils

method), 89
PrepGridue() (INGRID.utils.IngridUtils method), 89
PrepLineTracing() (INGRID.utils.IngridUtils

method), 89
print_points() (INGRID.geometry.Line method), 97
PrintSummaryInput() (INGRID.ingrid.Ingrid method),

75
PrintSummaryParams() (INGRID.ingrid.Ingrid

method), 75
ProcessKeywords() (INGRID.utils.IngridUtils

method), 89
ProcessPaths() (INGRID.utils.IngridUtils method), 89
psi() (INGRID.geometry.Point method), 99
PsiCostFunc() (INGRID.line_tracing.LineTracing

method), 103
PsiFunction() (INGRID.interpol.EfitData method),

105

Q
QuickStart() (in module INGRID.ingrid), 79

R
ReadYamlFile() (INGRID.ingrid.Ingrid static method),

75
ReconstructPatches() (INGRID.utils.IngridUtils

method), 89
RefreshSettings() (INGRID.ingrid.Ingrid method),

75
RefreshSettings() (INGRID.utils.TopologyUtils

method), 93
RegionEntered, 102
RemoveDuplicatePoints() (INGRID.geometry.Line

method), 96
RemoveDuplicatePoints() (INGRID.geometry.Patch

method), 98
RemovePlotLine() (INGRID.ingrid.Ingrid method), 75
RemovePlotPatch() (INGRID.ingrid.Ingrid method),

75
RemovePlotPoint() (INGRID.ingrid.Ingrid method),

75
reorder_limiter() (in module INGRID.geometry),

101

reverse_copy() (INGRID.geometry.Line method), 97
rotate() (in module INGRID.geometry), 101
rotate_NSEW_lookup() (IN-

GRID.line_tracing.LineTracing method),
104

rotmatrix() (in module INGRID.geometry), 101

S
SaveGeometryData() (INGRID.ingrid.Ingrid method),

75
SavePatches() (INGRID.ingrid.Ingrid method), 76
SaveSettingsFile() (INGRID.ingrid.Ingrid method),

76
segment_intersect() (in module INGRID.geometry),

101
set_gridue() (INGRID.topologies.sf105.SF105

method), 80
set_gridue() (INGRID.topologies.sf135.SF135

method), 80
set_gridue() (INGRID.topologies.sf15.SF15 method),

81
set_gridue() (INGRID.topologies.sf165.SF165

method), 82
set_gridue() (INGRID.topologies.sf45.SF45 method),

83
set_gridue() (INGRID.topologies.sf75.SF75 method),

84
set_gridue() (INGRID.topologies.snl.SNL method), 84
set_gridue() (INGRID.topologies.udn.UDN method),

85
SetDefaultSettings() (INGRID.utils.IngridUtils

method), 89
SetGeometry() (INGRID.ingrid.Ingrid method), 76
SetLimiter() (INGRID.utils.IngridUtils method), 89
SetMagReference() (INGRID.ingrid.Ingrid method),

78
SetPatchBoundaryPoints() (IN-

GRID.utils.TopologyUtils method), 93
SetTargetPlate() (INGRID.utils.IngridUtils method),

90
SetTargetPlates() (INGRID.ingrid.Ingrid method),

78
SetTopology() (INGRID.ingrid.Ingrid method), 78
SetupPatchMatrix() (INGRID.utils.TopologyUtils

method), 93
SF105 (class in INGRID.topologies.sf105), 79
SF135 (class in INGRID.topologies.sf135), 80
SF15 (class in INGRID.topologies.sf15), 81
SF165 (class in INGRID.topologies.sf165), 82
SF45 (class in INGRID.topologies.sf45), 82
SF75 (class in INGRID.topologies.sf75), 83
ShowSetup() (INGRID.ingrid.Ingrid method), 78
SNL (class in INGRID.topologies.snl), 84

114 Index

ingrid

SNL_find_NSEW() (INGRID.line_tracing.LineTracing
method), 103

split() (INGRID.geometry.Line method), 98
StartGUI() (INGRID.ingrid.Ingrid method), 79
StartSetup() (INGRID.ingrid.Ingrid method), 79
strictly_decreasing() (in module IN-

GRID.geometry), 101
strictly_increasing() (in module IN-

GRID.geometry), 101

T
test2points() (in module INGRID.geometry), 102
TopologyUtils (class in INGRID.utils), 91
trim_geometry() (in module INGRID.geometry), 102

U
UDN (class in INGRID.topologies.udn), 85
UnfoldLabel() (in module INGRID.geometry), 100
unit_vector() (in module INGRID.geometry), 102

V
Vector (class in INGRID.geometry), 99

W
which_increasing() (in module INGRID.geometry),

102
which_non_increasing() (in module IN-

GRID.geometry), 102
WriteGridueDNL() (INGRID.utils.IngridUtils method),

91
WriteGridueSNL() (INGRID.utils.IngridUtils method),

91

Index 115

	INGRID Introduction
	Getting Started
	Downloading and installing INGRID
	Requirements
	Obtaining the code
	Installing INGRID
	Contents

	Launching the INGRID GUI
	Launching from drivers
	Launching from a Python session

	The INGRID parameter file
	Background
	A single-null example file
	Setting data paths
	Providing an EQDSK file
	Defining target plates
	An especially important note on target plate geometries
	Defining x-points, magnetic-axis, and psi-levels

	Example: single-null configuration (introduction)
	Loading our first example
	Viewing loaded data
	Creating patches
	Saving Patch data
	The Patch map
	Creating a grid
	Fine-tuning the grid
	Exporting a gridue file
	Summary

	Example: single-null configuration (further exploration)
	Loading our example
	Standard SNL primary x-point line tracing pattern
	Overriding SNL primary x-point line tracing pattern
	Other settings for Patch map modification
	Background knowledge for poloidal and radial grid transformations
	Applying poloidal and radial grid transformations
	Reducing cell shearing via distortion_correction
	Adjusting guard cell size
	Summary

	Example: Two x-points in domain (SF75 example)
	Loading our example
	The SF75 line-tracing pattern, x-point directions, and psi labels
	Activating the limiter for Patch generation
	INGRID identification of configuration
	Using target-plates for generating a Patch map
	Creating the Patch map and grid

	Module Documentation
	ingrid
	topologies
	topologies.sf105
	topologies.sf135
	topologies.sf15
	topologies.sf165
	topologies.sf45
	topologies.sf75
	topologies.snl
	topologies.udn

	utils
	geometry
	line_tracing
	interpol

	Indices and tables
	Python Module Index
	Index

