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ingrid

INGRID (INteractive GRID) is a Python based tokamak edge plasma grid generator capable of automatic generation
of grids for magnetic-topologies with up to two x-points anywhere in the domain. The code can be operated in both a
GUI mode and within scripts.

This documentation will get a user up and running with operating INGRID in GUI mode. For operating INGRID via
scripts, API documentation has been generated (see Module Documentation).

The INGRID code is maintained by LLNL PLS-FESP. Issues with the code be brought to the attention of the current
maintainers Bryan Garcia (UCSC), Maxim Umansky (LLNL), and Jerome Guterl (GA).
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CHAPTER

ONE

INGRID INTRODUCTION

INGRID is an interactive grid generator for tokamak edge-plasma modeling capable of handling magnetic-
configurations with two x-points in the computational domain.

INGRID analyzes EFIT data in order to classify the magnetic-topology, and generate the appropriate gridue format-
ted file for use in simulation code UEDGE.

Key features of INGRID include:

• Support for single-null, unbalanced double-null, and snowflake (15, 45, 75, 105, 135, 165) configurations

• Python based code with GUI and scripting usability

• UEDGE friendly

• Portable YAML parameter file driver

• Modular design pattern for continued development efforts

INGRID was developed at LLNL PLS-FESP by Bryan Garcia (UCSC), Maxim Umansky (LLNL), and Jerome Guterl
(GA).
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CHAPTER

TWO

GETTING STARTED

In this section, we will explain how to install INGRID and walk you through an example case that generates a grid for
a single-null configuration. Examples will be showcasing the GUI operation of INGRID.

2.1 Downloading and installing INGRID

2.1.1 Requirements

To run INGRID on your machine, anaconda3 and setuptools must be installed and up to date. anaconda3
installers can be found here.

Tip: You can create a new conda environment with the command conda create --name myenv (replace
myenv with the environment name).

Once the Anaconda package manager is installed, setuptools can be added to the conda environment by running:

conda install -c anaconda setuptools

To update setuptools run:

pip install setuptools --upgrade

2.1.2 Obtaining the code

Clone the INGRID repo with the command:

git clone username@https://github.com/LLNL/INGRID.git IngridDir

where IngridDir is the name of the destination clone directory.
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2.1.3 Installing INGRID

Warning: Users not on MacOS Mojave may skip this warning. Read on otherwise. MacOS Mojave has issues
with certain backend libraries used in INGRID. These issues have been documented by Apple. As a workaround, a
specific Conda evironment has been created and must be installed by Mojave users. Navigate into the cloned repo
locate the file conda_env.yml. Create the mentioned Conda environment by running conda env create
-f conda_env.yml. Activate the new Conda environment by running conda activate ingrid. When
active, the terminal prompt should begin with (ingrid). The ingrid Conda environment must be active for
the next section.

The user will install INGRID with the setup.py file provided in the cloned repo. Installation begins by running:

python setup.py install --user

2.1.4 Contents

Within the cloned repo are a variety of directories containing source-code, drivers, example/template files for control-
ling INGRID (will be discussed later), and data that the provided example-files/demos use.

We will be utilizing the directory example_files in our tutorials, and we encourage you to utilize the items in
directory template_files for your own INGRID usage.

2.2 Launching the INGRID GUI

Now that INGRID has been installed on the machine, you can now begin utilizing INGRID in both GUI mode and as
an importable module in Python. We will focus on using INGRID’s stand-alone GUI for now.

Warning: As a reminder, MacOS Mojave users must ensure the conda environment provided with the INGRID
code has been installed. The following information assumes the user has done so (see Downloading and installing
INGRID if unsure).

2.2.1 Launching from drivers

Although INGRID can be imported and launched from a Python session, we will first explain how to launch INGRID
from the cloned repo.

We recommend new users launch INGRID in this way since the example_files we will explore in the tutorials
come pre-set with relative paths to necessary data (eqdsk files, geometry files, etc. . . ).

Note: Once the basic controls for setting paths to data withing the INGRID parameter file is understood, the user
should be able to utilize the provided example-files without starting from the drivers directory.

To launch via the driver script, navigate into the cloned repository that we used to install INGRID. From here, navigate
into the directory drivers and run the command:

python StartGUI.py

The INGRID GUI should now be visible, and ready for use.
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2.2.2 Launching from a Python session

For users who know do not intend on using the YAML files within example_files, or those who understand how
to set paths within the INGRID parameter file, you can launch the INGRID GUI from a Python prompt as follows:

>>> from INGRID import ingrid
>>> ingrid.QuickStart()

After executing the above commands, the INGRID GUI should be visible and ready for use (seen below).

Note: Upon launching the INGRID GUI, the user will be prompted with a plenty of terminal output. This is nothing
to be alarmed of since this part the Ingrid class’ initialization. As we load parameter files and modify settings, we
should see appropriate changes reflected in the terminal output.

2.3 The INGRID parameter file

2.3.1 Background

INGRID has been designed to be controlled from a single configuration/parameter file when operating in GUI mode.
This specially formatted YAML file is similar to Fortran namelist files due to the key-value structure it contains.

Here is a snippet of what a YAML formatted file can look like.

# Comments are supported and follow python convention!
# YAML entries are a mapping of the form:
#
# key: value
#
# It follows that python interprets the YAML file as a dict

my_YAML_entry:
# YAML file use spaces as indentation.
# 2 or 4 spaces (pick one and stick to it) indicate a nested item.
# Here we use 4 spaces.
my_str_key: 'Hello, YAML!' # my_str_key = 'Hello, YAML!'
my_int_key: 32 # my_int_key = 32
some_float: 3.14159 # some_float = 3.14159
my_true_bool: true # bool case-insensitive
my_false_bool: 0 # '1' '0' bool values supported.

# Empty lines within file are ok.

# Just remember it's the spaces that matter.

(continues on next page)
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(continued from previous page)

my_sub_dict: # Nested dicts are supported.
another_key: ending my example code-block here.
# The above value entry will be interpreted as a string
# (no quotations needed)

Although the INGRID parameter file contains many controls for a user, it does not stray from the patterns illustrated
above (no advanced YAML knowledge required).

Tip: While operating INGRID in GUI mode, keep your favorite text-editor handy with the parameter-file in use
loaded. You will be making frequent edits to this core parameter/configuration file.

Although not necessary for following tutorial, detailed documentation of the INGRID parameter-file can be found
here.

2.3.2 A single-null example file

Users of INGRID have plenty of controls available for fine-tuning their final grid. This section explains how to navigate
some key controls within the INGRID parameter file.

We will be using the pre-populated INGRID parameter file DIIID_SNL.yml from the example_files directory
in the single-null walk-through. Open this file in your preferred text-editor. At the time of writing this documentation,
the parameter file DIIID_SNL.yml contains the following:

# ---------------------------------------------------
# User data directories
# ---------------------------------------------------
dir_settings:
eqdsk: ../data/SNL/DIII-D/ # dir containing eqdsk
limiter: . # dir containing limiter
patch_data: ../data/SNL/DIII-D/ # dir containing patch data
target_plates: ../data/SNL/DIII-D/ # dir containing target plates

# ---------------------------------------------------
# eqdsk file name
# ---------------------------------------------------
eqdsk: neqdsk

# ---------------------------------------------------
# General grid settings
# ---------------------------------------------------
grid_settings:

# ----------------------------------------------------------------------------
# Settings for grid generation (num cells, transforms, distortion_correction)
# ----------------------------------------------------------------------------
grid_generation:
distortion_correction:
all:

active: True # true, 1 also valid.
resolution: 1000
theta_max: 120.0
theta_min: 80.0

np_default: 3
nr_default: 3
poloidal_f_default: x, x

(continues on next page)
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radial_f_default: x, x
# ---------------------------------------------------
# guard cell size
# ---------------------------------------------------
guard_cell_eps: 0.001
# ---------------------------------------------------
# num levels in efit plot
# ---------------------------------------------------
nlevs: 30
# ---------------------------------------------------
# num xpts
# ---------------------------------------------------
num_xpt: 1
patch_generation:
strike_pt_loc: target_plates # 'limiter' or 'target_plates'
rmagx_shift: 0.0
zmagx_shift: 0.0

# ---------------------------------------------------
# Psi levels
# ---------------------------------------------------
psi_1: 1.066
psi_core: 0.95
psi_pf_1: 0.975
# ---------------------------------------------------
# magx coordinates
# ---------------------------------------------------
rmagx: 1.75785604
zmagx: -0.0292478683
# ---------------------------------------------------
# xpt coordinates
# ---------------------------------------------------
rxpt: 1.300094032687
zxpt: -1.133159375302
# ---------------------------------------------------
# Filled contours vs contour lines
# ---------------------------------------------------
view_mode: filled

# ---------------------------------------------------
# Saved patch settings
# ---------------------------------------------------
patch_data:

file: LSN_patches_1597099640.npy
preferences:
new_file: true
new_fname: LSN_patches_1597099640.npy

use_file: false

# ---------------------------------------------------
# Integrator
# ---------------------------------------------------
integrator_settings:
dt: 0.01
eps: 5.0e-06
first_step: 5.0e-05
max_step: 0.064
step_ratio: 0.02

(continues on next page)
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tol: 0.005

# ---------------------------------------------------
# Limiter settings
# ---------------------------------------------------
limiter:
file: ''
use_efit_bounds: false

# ---------------------------------------------------
# target plate settings
# ---------------------------------------------------
target_plates:

plate_E1:
file: d3d_otp.txt
zshift: -1.6

plate_W1:
file: d3d_itp.txt
zshift: -1.6

Let’s highlight some important entries that are often used when operating INGRID for single-null cases (basic usage).
Advanced tutorials will also be provided.

2.3.3 Setting data paths

A user can provide a string that indicates the path to certain data. This is used to tell INGRID where to look for EFIT
data, target plate coordinate, limiter coordinates, and patch-data (for reconstruction). We can set these paths by editing
the entry:

# ---------------------------------------------------
# User data directories
# ---------------------------------------------------
dir_settings:
eqdsk: ../data/SNL/DIII-D/ # dir containing eqdsk
limiter: . # dir containing limiter
patch_data: ../data/SNL/DIII-D/ # dir containing patch data
target_plates: ../data/SNL/DIII-D/ # dir containing target plates

Note: INGRID supports both absolute paths and paths relative to where INGRID has been launched.

If dir_settings is missing any entries, INGRID will (internally) set the missing values to a default value of '.'
(current working directory). This holds even if dir_settings is omitted from the parameter file.

Note: dir_settings entries are the directory to look for data and NOT the file itself.

10 Chapter 2. Getting Started
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2.3.4 Providing an EQDSK file

The user provides the actual EQDSK file name separate from the dir_settings entry. We provide this at the
global YAML level under entry eqdsk. That is:

# ---------------------------------------------------
# eqdsk file name
# ---------------------------------------------------
eqdsk: neqdsk

Note: In this example, INGRID searches for the file neqdsk within the directory ../data/SNL/DIII-D/
(relative to the launch point) since dir_settings['eqdsk'] was set to ../data/SNL/DIII-D/ (see above).

2.3.5 Defining target plates

All target plate settings are under the global INGRID parameter file entry target_plates. We see this as:

# ---------------------------------------------------
# target plate settings
# ---------------------------------------------------
target_plates:

plate_E1:
file: d3d_otp.txt
zshift: -1.6

plate_W1:
file: d3d_itp.txt
zshift: -1.6

INGRID adopts a N-S-E-W compass direction notation in order to help generalize and simplify grid generation. It is
important for a user to eventually learn these conventions. A detailed discussion of INGRID’s naming conventions
can be found here.

For now (in the case of a lower single-null configuration), note that entries plate_E1 and plate_W1 correspond
to the outer and inner target plates, respectively. Each plate entry recognizes sub-entries file (file name to load),
zshift (z-translation) and rshift (r-translation, not utilized and internal to INGRID defaults to 0.0).

2.3.6 Defining x-points, magnetic-axis, and psi-levels

Settings for x-point coordinates, magnetic-axis coordinates, and psi-levels are found under the global INGRID param-
eter file entry grid_settings.

# ---------------------------------------------------
# General grid settings
# ---------------------------------------------------
grid_settings:

# ...
# ...
# Other items currently not of interest...
# ...
# ...

# ---------------------------------------------------
# num xpts

(continues on next page)
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# ---------------------------------------------------
num_xpt: 1

# ---------------------------------------------------
# Psi levels
# ---------------------------------------------------
psi_1: 1.066 # SOL
psi_core: 0.95 # CORE
psi_pf_1: 0.975 # PRIVATE-FLUX

# ---------------------------------------------------
# magx coordinates
# ---------------------------------------------------
rmagx: 1.75785604
zmagx: -0.0292478683

# ---------------------------------------------------
# primary xpt coordinates
# ---------------------------------------------------
rxpt: 1.300094032687
zxpt: -1.133159375302

Warning: The entry num_xpt is one of the most important entries in the INGRID parameter file since it deter-
mines INGRID’s method of analysis. Dealing with more than one x-point requires a more in-depth understanding
of the parameter file, so ensure this is set to the correct number of x-points.

2.4 Example: single-null configuration (introduction)

Warning: This tutorial assumes INGRID has been launched from the provided GUI driver. See page Launching
the INGRID GUI for explaination.

Here we will demonstrate how to generate a grid for a lower single-null (SNL) configuration. This tutorial aims to:

• Explain the GUI capabilities

• Illustrate the INGRID workflow (data analysis → patch-generation → grid-generation → exporting gridue)

• Expose the user to key parameter-file controls (see parameter-file documentation for further details)

Note: Although we are creating a lower single-null grid here, INGRID internally treats both lower and upper single-
null configurations as SNL class instances. This means there is no difference in user operation for generating a grid
for either LSN or USN configurations.

12 Chapter 2. Getting Started
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2.4.1 Loading our first example

After getting the INGRID GUI up and running, click the GUI button labeled “Select Parameter File” shown below
boxed in red.

From here, your machine’s native file navigator should be on the screen. Navigate into the directory
example_files the cloned repository to find a collection of example-cases we used for showcasing INGRID’s
capabilities (as well as for testing the product).

Now navigate into directory SNL and select the file DIIID_SNL.yml. The GUI should now be updated with the
loaded path to the example-file we selected as seen below boxed in red.

INGRID has now processed the selected parameter-file. Some (of many) actions executed automatically by INGRID
include:

• Processing of paths to data (EFIT, geometry, patch-data, etc.)

• Loading of EFIT data

• Loading of strike-geometry (target plates and/or limiter)

• Refining of x-point coordinates

• Refining of magnetic-axis coordinates

• Initialization of visualization settings

With the data loaded, we can now proceed.

2.4.2 Viewing loaded data

To view the EFIT data, loaded strike-geometry, and psi-levels that will dictate our final grid, simply select “View
Loaded File” shown below boxed in red.

2.4. Example: single-null configuration (introduction) 13
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Once clicked, we are greeted with a new plot window showing the DIII-D data we have loaded.

Here are some key items that INGRID has plotted (as seen in the legend):

• Refined primary x-point coordinate as an orange ‘+’ marker (xpt1)

• Refined magnetic-axis coordinate as a yellow ‘+’ marker (magx)

• Normalized eqdsk data as black and white filled contours (psi-value of 0 at magx and psi-value of 1 at xpt1)

• plate_W1 data as a dark blue line (LSN inner target plate)

14 Chapter 2. Getting Started
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• plate_E1 data as an orange line (LSN outer target plate)

• The primary separatrix (red contour line)

• SOL boundary (lime contour line)

• CORE boundary (cyan contour line)

• PRIVATE-FLUX boundary (white contour line)

Note: The user provides the approximate primary x-point coordinates (rxpt1, zxpt1), and magnetic axis co-
ordinates (rmagx, zmagx) in the INGRID parameter file. INGRID takes these as an initial guess to provide to a
root-finder in order to refine the user-provided coordinates to high-accuracy. These values are used internally through-
out the user-session.

This stage is where the user will interact the most with the INGRID parameter file (tweaking psi-values, target-plate
locations, limiter data, etc). Said settings will be used to generate the patch map we will see in the next section. Since
these have already been provided for you, let us proceed to creating patches.

2.4.3 Creating patches

INGRID interally uses a geometry object hierarchy (Point ∈ Line ∈ Patch ∈ TopologyUtils) to generate the
final gridue file. We will now create a collection of Patch objects. These Patch objects are quadrilaterals that form
a partition of the region we are interested in generating a grid for. Before elaborating further, let us now create said
collection of patches (referred to as a Patch map) by clicking the GUI button labeled “Create Patches” shown below
boxed in red.

Once clicked, INGRID begins line-tracing in order to generate the Patch map seen below.

2.4. Example: single-null configuration (introduction) 15
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The collection of Patch objects are pictured in the Patch map. These Patch objects will generate their own subgrid
that will be stitched together to form the exported global grid.
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2.4.4 Saving Patch data

INGRID provides the user the capability of saving Patch data into a specially formatted NumPy npy files for later
reconstruction. We control this feature within the parameter file by modifying the entries under patch_data (seen
below):

# ---------------------------------------------------
# Saved patch settings
# ---------------------------------------------------
patch_data:

file: LSN_patches_1597099640.npy
preferences:
new_file: true
new_fname: LSN_patches_1597099640.npy

use_file: false

Here we have:

• file - the name of the file to use for Patch reconstruction

• preferences - settings for configuring final Patch data file

– new_file - create a new Patch data file

– new_fname - name of new Patch data file

• use_file - use the provided file for Patch reconstruction

Note: Remember to set the directory to search for a Patch data file by modifying patch_data under entry
dir_settings

Because the parameter file is populated with the above settings, we see that after creation of a Patch map the terminal
prompts the user with a message stating:

# Saved patch data for file LSN_patches_1597099640.npy

The user is encouraged to try this feature out. To do so, first change the use_file entry within patch_data to
a value of True and save the file. Now, close the Patch map window, and click Create Patches again. The
Patch map should now be restored back to the state it was at.

Tip: Patch data files expedite the grid generation process by bypassing all line-tracing. This feature is also useful
for trading cases with other INGRID users

2.4.5 The Patch map

In the above plot we can see the “Patch map”. Each Patch is been assigned it’s own color, as well as a Patch
label/tag consisting of a two-character string of the form “<alpha_char><numeric_char>””. This coding directly
represents the index space of the final grid with:

• The alpha-char (“A”, “B”, . . . , “F” here) representing a poloidal “column” in the index space.

• The numeric-char (“1” and “2” here) representing a radial “row” in the index space.

Below is diagram illustrating said notation.

2.4. Example: single-null configuration (introduction) 17
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This notation proves to be robust since it holds for not only SNL topologies (both LSN and USN), but also all topologies
such as UDN and the family SF*.

For the SNL family of configurations, the collection of Patch objects with numeric_char == “2” (“A2” - “F2”)
represent the SOL, Patch objects “A1” and “F1” represent the PF region, and Patch objects “B1”, “C1”, “D1”, and
“E1” represent the CORE.

Note: We will use this notation extensively for fine-tuning the final grid

Tip: Patch objects are ordered alphabetically clock-wise around the magnetic-axis and enumerated in direction of
increasing psi

Now that we have partitioned the EFIT domain into the region we wish to model, let us now generate a grid.

2.4.6 Creating a grid

Before generating a grid, let’s take a look at some grid controls in the INGRID parameter file.

Below are some entries we will be modifying.

# ---------------------------------------------------
# General grid settings
# ---------------------------------------------------
grid_settings:

# ----------------------------------------------------------------------------
# Settings for grid generation (num cells, transforms, distortion_correction)
# ----------------------------------------------------------------------------
grid_generation:
distortion_correction:
all:

active: True # true, 1 also valid.
resolution: 1000

(continues on next page)
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theta_max: 120.0
theta_min: 80.0

np_default: 3
nr_default: 3
# Other grid settings

Within the entry grid_settings, we have:

• grid_generation - settings for controlling resultant grid

– distortion_correction - settings for controlling shearing in grid

– np_default - default number of poloidal cells per Patch

– nr_default - default number of radial cells per Patch

Note: We will work with entry distortion_correction at a later time (next section). For now, set the entry
value to False so that we can see it’s effects later

To execute refinement of the Patch map into a grid, we click the GUI button Create Grid.

The terminal will prompt the user with the progress of Patch refinement by providing a short summary of the subgrid
being generated within each Patch. When Patch refinement has finalized, we are greeted with a new window
showing the resultant grid.

2.4. Example: single-null configuration (introduction) 19



ingrid

Although this grid can be immediately exported, there are still actions we can take to improve our grid naively gener-
ated with only np_default and nr_default.
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ingrid

2.4.7 Fine-tuning the grid

Generating grids with global values np_default and nr_default is not enough in many cases. INGRID allows
users to specify the number of poloidal and radial cells for particular regions of the Patch map. This allows for
refining the grid near regions of interest while maintaining global/default grid values per Patch.

To utilize this feature, we will fall back on the Patch naming convention explained in section patch-map-ref. The
figure below shows a collection of keyword entries (np_A, np_B, . . . np_F, nr_1, nr_2) that can be added to the
INGRID parameter file to control the number cells in a grid.

Note how modifying np_A would affect both “A2” and “A1” since they are poloidally dependent in index-space.
Similarly, we see how modifying np_1 would affect “A1” - “F1” since they are radially dependent in index-space.

Let’s illustrate this idea by increasing the number of poloidal cells near both target plates. We see by inspecting the
Patch map that target plates border patches “A*” and “F*”. This says we must add entries np_A and np_F to the
INGRID parameter file. That is:

# ---------------------------------------------------
# General grid settings
# ---------------------------------------------------
grid_settings:

# ----------------------------------------------------------------------------
# Settings for grid generation (num cells, transforms, distortion_correction)
# ----------------------------------------------------------------------------
grid_generation:
distortion_correction:
all:

active: false # true, 1 also valid.
resolution: 1000
theta_max: 120.0
theta_min: 80.0

np_A: 9 # Create 9 poloidal cells in patches A1 and A2
np_F: 9 # Create 9 poloidal cells in patches F1 and F2

np_default: 3

(continues on next page)
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nr_default: 3
# Other grid settings

In addition to refining poloidally, let’s increase the radial resolution near the target plates. In this case “A2” and “A1”
are not dependent on each other (as seen in figure above). On the other hand, since the SOL consists of all patches
with numeric-tag “2”, modifying “A2” in radial cells will modify all other patches in the SOL radially to keep the
index-map consisitent. We will choose to refine “A2”. That is:

# ---------------------------------------------------
# General grid settings
# ---------------------------------------------------
grid_settings:

# ----------------------------------------------------------------------------
# Settings for grid generation (num cells, transforms, distortion_correction)
# ----------------------------------------------------------------------------
grid_generation:
distortion_correction:
all:

active: false # true, 1 also valid.
resolution: 1000
theta_max: 120.0
theta_min: 80.0

np_A: 9 # Create 9 poloidal cells in patches A1 and A2
np_F: 9 # Create 9 poloidal cells in patches F1 and F2

nr_2: 6 # Create 6 radial cells in layer 2

np_default: 3
nr_default: 3
# Other grid settings

After making the addition, save the file and click “Create Grid”. INGRID will detect that an edit was made to the
parameter file and apply all changes. When Patch refinement has finalized, we are greeted with a new window
showing the updated grid.

22 Chapter 2. Getting Started
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We can continue to modify the grid in order to allocate more cells near the x-point. A natural choice would be to target
np_B and np_E. Doing so with the values np_B = 18 and np_E = 18 (double resolution for the larger patches),
we see our parameter file consists of:

# ---------------------------------------------------
# General grid settings
# ---------------------------------------------------
grid_settings:

# ----------------------------------------------------------------------------
(continues on next page)
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# Settings for grid generation (num cells, transforms, distortion_correction)
# ----------------------------------------------------------------------------
grid_generation:
distortion_correction:
all:

active: false # true, 1 also valid.
resolution: 1000
theta_max: 120.0
theta_min: 80.0

np_A: 9 # Create 9 poloidal cells in patches A1 and A2
np_F: 9 # Create 9 poloidal cells in patches F1 and F2
np_B: 18 # Create 18 poloidal cells in patches B1 and B2
np_E: 18 # Create 18 poloidal cells in patches E1 and E2

nr_2: 6 # Create 6 radial cells in layer 2

np_default: 3
nr_default: 3
# Other grid settings

and produces a grid that we can see below (zoomed with Matplotlib toolbar provided in plots).
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For the purposes of this introductory tutorial, let us continue to exporting the gridue file.

2.4. Example: single-null configuration (introduction) 25
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2.4.8 Exporting a gridue file

When the user is satisfied with the generated grid, a gridue formatted file can be generated by selecting “Export
gridue” shown below boxed in red.

From here, the user will be able to select a save location for their INGRID generated gridue file.

2.4.9 Summary

In this tutorial, we demonstrated how to generate a gridue file for an SNL configuration. This introductory tutorial is
not an exhaustive demonstration of INGRID’s capabilities for grid generation. Other capabilities such as customizing
the Patch map, applying poloidal/radial grid transformations, and mitigating cell-shearing can be found in the next
SNL example case.

2.5 Example: single-null configuration (further exploration)

Note: This tutorial assumes the reader has already explored the introductory SNL tutorial.

Some cases require enabling of certain attributes in the parameter file in order to successfully produce a grid.

Here we will detail said cases, and also dig deeper into INGRID’s capabilities for generating a grid. This tutorial will:

• Detail when adjustment to line-tracing algorithm is required by user

• Illustrate how to make adjustments to a generated Patch map

• Illustrate how to apply poloidal/radial transformations for non-uniform grid spacing

• Demonstrate how to reduce cell-shearing (increase orthoganality) of a grid via distortion_correction

2.5.1 Loading our example

The parameter file cmod_param.yml we will use in this tutorial is located in example_files/SNL.

Loading the parameter file in the GUI and viewing the data should show the following.

26 Chapter 2. Getting Started
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Immediately we see that there is a line segment originating from the primary x-point and extending to the EFIT domain
boundary.

This is an indicator that INGRID will be overriding the default line tracing behavior from the primary x-point. As for
why and how we activate this capability will be detailed in the next section.

2.5.2 Standard SNL primary x-point line tracing pattern

INGRID utilizes specific line tracing procedures for each supported topology. Below is a cartoon of line tracing
directions from the primary x-point.

Tracing in direction N, S, E, W are orthogonal to flux surfaces.

Note that line tracing from the W and E directions terminate upon intersection with the psi-max surface. Upon
intersection with the psi-max surface, line tracing continues along the poloidal line and searches for intersection with
a target plate.

In this particular example case we are exploring, intersection with the psi-max surface occurs past the target plate,
thus causing line tracing to fail.

We see this in the cartoon below when modifying the target plate geometry.
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Although this can indeed be remedied by modifying the target plate geometry or adjusting psi-max surfaces, INGRID
allows the user to override the default orthogonal line tracing so that line tracing can continue without error. This
remedy is illustrated below.
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2.5.3 Overriding SNL primary x-point line tracing pattern

We can override the default orthogonal line tracing for both E and W directions with the entries use_xpt1_E and
use_xpt1_W that reside within patch_generation. This can be seen below.

grid_settings:
#...
# other settings
#...
patch_generation:

use_xpt1_E: true
use_xpt1_W: false

Upon activating either entry and reloading the view into the parameter file, we will see line segment that extends from
the primary x-point. This segment is a marker indicating the new line tracing direction.

By default, no rotation is applied to the line tracing direction. We can adjust the direction with the entries
xpt1_E_tilt and xpt1_W_tilt. We see this below.

grid_settings:
#...
# other settings
#...
patch_generation:

use_xpt1_E: true
use_xpt1_W: false
xpt1_E_tilt: 0.2 # radian value for rotation
xpt1_W_tilt: -0.8 # radian value for rotation

The user now has the tools to remedy the above situation. We can see in this case that xpt1_E_tilt: 0.2
provides enough clearance such that intersection with the target plate will occur.
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Tip: When it is not immediately obvious from the loaded EFIT data that orthogonal line tracing will intersect psi-max
past the target plate, the user can change the visualization of the INGRID data from

filled contours to unfilled. We do this by changing view_mode: filled to view_mode: lines. We can
control the number of contour lines plotted by modifying the nlevs entry as well. This can help with visually
imagining where orthogonal line tracing will terminate.

2.5.4 Other settings for Patch map modification

Overriding orthogonal line tracing from the primary x-point is just one modification that can be made to influence a
final Patch map.

SNL line tracing for certain patches in the core will define boundaries based off intersection with the horizontal and
vertical lines that intersect the magnetic axis (midplane).

One such modification is applying an RZ translation to the magnetic-axis coordinate used to generate said Patch
boundaries.

This can be controlled in the parameter file by editing entries rmagx_shift and zmagx_shift under
patch_generation in grid_settings.

grid_settings:
patch_generation:

rmagx_shift: 0.0 # Translate R coordinate
zmagx_shift: 0.0 # Translate Z coordinate

Saving the parameter file and reloading the view into the data will reflect the changes. The Patch map generated with
the translations above can be seen below.

32 Chapter 2. Getting Started



ingrid

In a similar manner to adjusting the angle of line tracing in the E and W directions from the primary x-point, we can
adjust the line segments extending from the magnetic-axis. These line segments define the east faces of patches B1
and B2, as well as the west faces of patches E1 and E2.

The tilt of the inner-midplane and outer-midplane can be controlled with entries magx_tilt_1 and magx_tilt_2
respectively. These entries are contained within patch_generation in grid_settings.

grid_settings:
patch_generation:

magx_tilt_1: 0.0 # inner-midplane rotation (in radians)
magx_tilt_2: 0.0 # outer-midplane rotation (in radians)

Saving the parameter file and reloading the view into the data will reflect the changes. The Patch map generated with
the only the tilt values entered above can be seen below.
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Note: Midplane tilt entries are in radians and follow the standard counter-clockwise rotation direction.

Combining both together yields the following Patch map.
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Tip: Applying these Patch modifications appropriately can allow one to increase cell density near primary x-point
without modifying np/nr values

On the left is the grid with no Patch map modifications for reference.
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2.5.5 Background knowledge for poloidal and radial grid transformations

INGRID allows the user to provided poloidal and radial grid distribution functions for generating non-uniform grids.

Before detailing how to invoke these features, some background on the Patch object itself.

Each Patch boundary is defined by 4 lines that we refer to as N, E, S, W. This allows for us to maintain a clockwise
orientation on the boundary of a Patch. Below is a cartoon illustrating the idea.
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The N boundary (seen in dark blue) for Patch A2 begins at the max-psi strike-point on the target plate west of the
primary x-point (inner target plate for SNL case), and terminates at the B2 interface. The S boundary (seen in magenta)
for Patch A2 is oriented in the opposite direction and terminates upon intersection with the target plate.

The E and W boundaries (seen in dark green and cyan, respectively) are defined in the radial direction relative to the
N and S boundaries.

Note that this convention holds throughout the entire Patch map. We can see this by noticing that upon reaching Patch
F2, the E boundary is now defined by a portion of the (LSN outer) target plate.

Note: INGRID chooses to parameterize the **N face in length with parameter 𝑠 ∈ [0, 1] for poloidal distribution
functions. Similarly, INGRID chooses to parameterize the W face in increasing psi with parameter 𝑠 ∈ [0, 1] for radial
distribution functions. **

Now we discuss how the user specifies poloidal and radial grid transformations within the parameter file.

INGRID parses a string from the user in the form ``x, f(x)`` where :math:`x` indicates the dependent variable
and :math:`f(x)` is mathematical expression representing the distribution. Within the parameter file, we have seen
the string x, x utilized for entries radial_f_default and poloidal_f_default. INGRID interprets this
as applying a uniform distribution of vertices for defining the grid (consistent with what we have seen).
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Warning: Due to the parameterization 𝑠 ∈ [0, 1], defining 𝑓(𝑥) such that 𝑓 : [0, 1] → [0, 1] is important. Apply
appropriate normalization operations when utilizing non-trivial functions (see example below).

INGRID utilizes SymPy for generating a function from the user provided string. Standard Python arithmetic operations
are supported (+, -, *, /, **, . . . ), as well as common mathematical functions such as exp and log.

2.5.6 Applying poloidal and radial grid transformations

In general, we adopt a notation similar to specifying np/nr cells. Below is a snippet of a YAML file with default
poloidal and radial transformation values.

grid_settings:
grid_generation:

# ...
# Other grid_generation settings
# ...

poloidal_f_default: x, x # Global uniform poloidal
radial_f_default: x, x # Global uniform radial

Much like np_default and nr_default, entries poloidal_f_default and radial_f_default apply
to poloidal “columns” and radial “rows” in index space, respectively. The default appended to poloidal_f_
and radial_f_ tells INGRID to apply the corresponding transformation globally.

Poloidal transformations can be specified with the same convention as specifying poloidal cells (poloidal_f_A,
poloidal_f_B, . . . , poloidal_f_F).

Radial transformations follow the same convention (radial_f_1, radial_f_2), but also have an additional
radial_f_3 specifically for the inner-core region.

The following applies an exponential-like distribution (between 0 and 1) for the SOL, PF, and CORE. These transfor-
mations will generate grid cells that hug the primary separatrix slightly more than usual.

grid_settings:
grid_generation:

# ...
# Other grid_generation settings
# ...

poloidal_f_default: x, x # Global uniform poloidal
radial_f_default: x, x # Global uniform radial
radial_f_1: x, 1-(1-exp(-(1-x)/0.4))/(1-exp(-1/0.4))
radial_f_2: x, (1-exp(-(x)/0.8))/(1-exp(-1/0.8))
radial_f_2: x, (1-exp(-(x)/0.8))/(1-exp(-1/0.8))

The resulting grid with transformations can be seen on the left, and the original grid with no transformations can be
seen on the right.
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2.5.7 Reducing cell shearing via distortion_correction

INGRID does not enforce an orthogonality condition when generating a grid. INGRID allows the user to im-
pose angle constraints on cells within a generated grid in order to increase orthogonality. We do this via the
distortion_correction feature.

Below is an example of cell shearing and the motivation for INGRID’s distortion_correction.

This distortion_correction tool allows the user to specify angle constraints theta_min and theta_max
in order to mitigate cell shearing. INGRID will shift the cell vertex by increments of 1 / resolution until the
resultant angle is within the user constraints.

If the constraint cannot be satisfied (vertex leaves the Patch), INGRID will backtrack until the vertex is within the
Patch bounds.

Below is a snippet of the parameter file format showing distortion_correction applied globally.

grid_settings:
grid_generation:

distortion_correction:
(continues on next page)
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# Global settings
all:

active: True # toggle distortion_correction
resolution: 1000 # 1 / resolution step-size for shifting vertex
theta_max: 120.0 # angle constraint
theta_min: 80.0 # angle constraint

# Patch specific settings can be provided in addition to global settings
# (similar to how we specify np/nr for Patches on top of default np/nr)

# Example: Specify distortion_correction for Patch A1

# A1: # <-- (Patch name here can be changed)
# active: false # toggle distortion_correction
# resolution: 1000 # 1 / resolution step-size for shifting vertex
# theta_max: 120.0 # angle constraint
# theta_min: 80.0 # angle constraint

np_default: 5
nr_default: 5
poloidal_f_default: x, x
radial_f_default: x, x

Below is a side-by-side comparison of distortion_correction toggled on and off respectively.
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We can see that the radial lines are indeed more orthogonal to the poloidal contours. Although only a mild effect in
this case, we have seen that distortion_correction can significantly reduce shearing and generate tidier grids
in others (example SF cases seen below).

This feature (in addition to those detailed above) is just another tool at a user’s disposal that need not be utilized in
every case.

2.5.8 Adjusting guard cell size

Guard cell size for a generated grid can be specified within the parameter file by editing entry guard_cell_eps
within grid_settings. That is:

# ---------------------------------------------------
# General grid settings
# ---------------------------------------------------
grid_settings:

# ...
# ... Other grid_settings entries

(continues on next page)
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# ...
guard_cell_eps: 0.00001 # Size of guard cells.

Note: Specification of guard cell size must be done prior to initiating grid generation (clicking Create Grid).

2.5.9 Summary

In this tutorial, we encountered a situation where parameter file modification is required for INGRID to successfully
generate a Patch map. This was resolved by modifying the line tracing procedure in order to accomodate the provided
geometry.

We also saw how the modification of the line tracing procedure falls into the over-arching category of INGRID tools
that allow the user to customize a Patch map.

Finally, we dove deeper into grid customization capabilities such as applying distortion_correction, poloidal
and radial transformations, and specifying guard cell size.

2.6 Example: Two x-points in domain (SF75 example)

Note: This tutorial assumes the reader has already read both the introductory SNL tutorial and the further exploration
SNL tutorial.

Here we will demonstrate how to generate a grid when there are two x-points in the domain. In particular, we will
generate a grid for a snowflake-75 (SF75) configuration.

Because INGRID internally handles the identification and classification of magnetic topology, the general steps de-
tailed here for generating a grid apply to all the other configurations with two x-points in the domain. The user will
only need to refer to provided diagrams of a configuration’s Patch map, x-point NSEW directions, and psi labels for a
specific configuration.

2.6.1 Loading our example

The parameter file SF75.yml we will use in this tutorial is located in example_files/SF75.

A key difference inside the parameter file is that now the entry num_xpt has an associated value of 2. This activates
INGRID’s topology classification when two x-points are present in the domain. With this, INGRID now expects more
parameter file entries from the user. These include:

• Approximate R coordinate of secondary x-point rxpt2

• Approximate Z coordinate of secondary x-point zxpt2

• Additional psi entries psi_2 and psi_pf_2

• Limiter data (or usage of EFIT domain bounds to act as a psuedo-limiter)

• Two additional target plates (when strike_pt_loc has an associated value of target plates)

Loading the parameter file in the GUI and viewing the data should show the following.
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We can immediately see the presence of a secondary x-point, it’s corresponding separatrix, a rectangular (psuedo)
limiter and additionaly psi lines that we will use to generate a Patch map.

Before generating a Patch map, we discuss the SF75 layout.
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2.6.2 The SF75 line-tracing pattern, x-point directions, and psi labels

The figure below shows a Patch map for general SF75 configuration.

The user should reference the above figure when prepping the parameter file for generating a Patch map by verifying
target plates are in valid locations relative to x-points and psi-boundaries.

First, note the target plate naming convention plate_W1, plate_E1, plate_W2, and plate_E2. Again, by
removing notions of “inner” and “outer” plates in the SNL case, we see that we now have a general naming convention
that can be applied to all configurations with two x-points in the domain.

This naming convention is defined by the NSEW directions for both the primary x-point (xpt1) and secondary x-point
(xpt2). Below we can see two figures that illustrate the NSEW directions for xpt1 and xpt2, respectively.
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Finally, we illustrate the psi-labels associated with the psi-boundaries of the SF75 configuration.
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The above shows we now have parameter file entries psi_2 and psi_pf_2 to assign values to.

We will see in other configurations (e.g. UDN, SF45, etc) that the location of the psi labels will vary. Because the
location of psi boundaries vary with each configuration, the user must carefully note which psi boundaries they are
dealing with.

In general, psi_1 will correspond to psi-max, psi_core remains set to the core psi value, psi_pf_1 will cor-
respond to the psi-surface we intersect by tracing S of xpt1, and psi_pf_2 will correspond to the psi-surface we
intersect by tracing S of xpt2. Typically, the psi_2 psi-boundary and strike-point locations for the psi-entries listed
above often vary.
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2.6.3 Activating the limiter for Patch generation

Understanding INGRID limiter usage is an essential part of generating a Patch map for cases with two x-points in the
domain.

INGRID does not require the use of target plates for generating a Patch map if the user opts for using a limiter.

This is controlled within the parameter file with strike_pt_loc within the patch_generation block. We see
this below.

grid_settings:

# ...
# other settings
# ...

patch_generation:
# ...
# other settings
# ...

# strike_pt_loc takes the values of 'limiter' or 'target_plates'
strike_pt_loc: limiter # generates a Patch map with a limiter rather than target

→˓plates

When strike_pt_loc is set to a value of limiter, INGRID will utilize all geometry data provided in the
parameter file block labeled limiter.

We can see the limiter settings in SF75.yml below.

grid_settings:

# ...
# other settings
# ...

patch_generation:
# ...
# other settings
# ...

# strike_pt_loc takes the values of 'limiter' or 'target_plates'
strike_pt_loc: limiter # generates a Patch map with a limiter rather than target

→˓plates

# Specifications for using a limiter
limiter:

file: '' # File name of .txt file with coordinates specifying limiter geometry.

use_efit_bounds: true # Use the EFIT domain boundary as a limiter

# Coordinates: [(rmin, zmin), (rmax, zmin), (rmax, zmax), (rmin, zmax), (rmin,
→˓zmin)]

zshift: 0.0 # Shift the limiter geometry in the z-direction
rshift: 0.0 # Shift the limiter geometry in the z-direction

# Adjust shape of EFIT domain boundary psuedo-limiter in r coordinate
(continues on next page)
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efit_buffer_r: 0.2 # Default value: 1.0e-2

# Coordinates: [(rmin + efit_buffer_r, zmin), (rmax - efit_buffer_r, zmin),
# (rmax - efit_buffer_r, zmax), (rmin + efit_buffer_r, zmax), (rmin +

→˓efit_buffer_r, zmin)]

# Adjust shape of EFIT domain boundary psuedo-limiter in z coordinate
efit_buffer_z: 0.05 # Default value: 1.0e-2

# Coordinates: [(rmin, zmin + efit_buffer_z), (rmax, zmin + efit_buffer_z),
# (rmax, zmax - efit_buffer_z), (rmin, zmax - efit_buffer_z), (rmin,

→˓zmin + efit_buffer_z)]

Note: INGRID will utilize the default limiter data provided within the eqdsk file if no file is provided and
use_efit_bounds is set to False. If no limiter data is available in the eqdsk file, INGRID will set
use_efit_bounds to True.

Below are figures illustrating possible edits to the parameter-file limiter block entry (we will not be using these
values for the remainder of the tutorial).

First, setting use_efit_bounds to False (default eqdsk limiter data)
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Next, setting use_efit_bounds back to True, but setting both efit_buffer_r and efit_buffer_z back
to their default values of 1.0e-2.
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Warning: When setting use_efit_bounds to True, the user must provide a non-zero value for values
efit_buffer_r and efit_buffer_z.

2.6.4 INGRID identification of configuration

As mentioned in the previous section, understanding INGRID limiter usage is an essential part of generating a Patch
map for cases with two x-points in the domain.

This is because INGRID identifies a configuration by decomposing subset of the domain contained within the limiter
into three distinct regions: core, private-flux, and separatrix exterior.

We see this below with the core shaded in magenta, private-flux shaded in blue, and separatrix exterior with no filled
shading.
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To emphasize the dependence on the limiter for decomposition, we also illustrate with setting both efit_buffer_r
and efit_buffer_z back to their default values of 1.0e-2.
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It is up to the user to ensure the following is satisfied for successful identification of magnetic topology:

• The provided limiter forms a closed loop (note EFIT bounds do this by default and is therefore a useful tool for
classification)

• The Magnetic-axis is contained within the closed limiter geometry

• The primary x-point is contained within the closed limiter geometry

• The primary separatrix “legs” intersect the limiter walls and form a closed region

• The secondary x-point is contained within the closed limiter geometry

We can indeed see that our parameter file has been preset to satisfy all of the above.
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2.6.5 Using target-plates for generating a Patch map

The user can opt for using target-plates rather than a limiter for generating a Patch map for cases with two x-points
in the domain. Setting the entry strike_pt_loc to target_plates tells INGRID to generate the Patch map
using geometry provided in the parameter file block target_plates. We see this snippet below.

grid_settings:

# ...
# other settings
# ...

patch_generation:
# ...
# other settings
# ...

# strike_pt_loc takes the values of 'limiter' or 'target_plates'
strike_pt_loc: target_plates # generates a Patch map with a target_plates rather

→˓than limiter block

# Specifications for using target plates
target_plates:

# Target plate E of xpt1
plate_E1:
file: ../data/SF75/plate_E1.txt
rshift: 1.0
zshift: 0.28

# Target plate E of xpt2
plate_E2:
file: ../data/SF75/plate_E2.txt
rshift: 0.45
zshift: 0.00

# Target plate W of xpt1
plate_W1:
file: ../data/SF75/plate_W1.txt
rshift: -0.2
zshift: 0.2

# Target plate W of xpt2
plate_W2:
file: ../data/SF75/plate_W2.txt
zshift: 0.0
rshift: 0.00

The user can refer to the diagrams earlier in the tutorial to see where the target plates above should reside in the
domain.

By making the above edits, we then refresh our view of the data to obtain the following plot.
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Indeed, we see there are now four target plates in the EFIT domain.

Note: The presence of the limiter in the figure is not a bug. Regardless of whether we decide to utilize the limiter
or target plates for generating a Patch map, INGRID still relies on the limiter to classify the magnetic topology. This
is why the user must be comfortable with limiter controls.

2.6.6 Creating the Patch map and grid

The majority of the effort for generating a Patch map goes into the preparation of the EFIT data. We indeed saw this
in the previous sections. From here, we carry out the usual process of generating a Patch map that we saw in the SNL
case.

All of the Patch map edit capabilities that we performed on the SNL cases are also available for all other cases with no
further explanation.

We proceed with Patch map generation and obtain the following Patch map when keeping strike_pt_loc set with
a value of target_plates.
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If we had kept strike_pt_loc set to limiter, we would obtain the Patch map below.
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All grid generating instructions detailed in the SNL case also apply to the SF cases. The only difference is the addition
of an additional control nr_3 that controls the Patch objects with name ending with 3.

Using np_default and nr_default with values of 3 produces the following grid when using target plates.
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Using np_default and nr_default with values of 3 produces the following grid when using the limiter.
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All other grid generation customization tools such as distortion_correction, poloidal_f_A -
poloidal_f_I, and radial_f_1 - radial_f_3 are utilized in the same ways we saw in the earlier SNL cases.
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